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Abstract
Ensuring that artificial intelligence (AI) tools in healthcare operate
safely and effectively requires robust evaluation within realistic
clinical contexts. Traditional evaluation methods often rely on stan-
dardized benchmarks that fail to capture the full complexity of
patient care, while manually curating a dataset for a specific de-
ployment scenario can be time-consuming and limiting.We propose
CuraBench, a configurable benchmark generation system designed
to create customized synthetic datasets tailored to specific clinical
use cases. CuraBench’s taxonomy-driven configurable approach
enables diverse evaluation scenarios—from assessing how AI sys-
tems interpret longitudinal patient histories, to evaluating clinical
note summarization. By leveraging real-world healthcare data, Cur-
aBench produces synthetic yet realistic scenarios configured to
match the requirements of various medical settings, specialties,
and patient demographics. Preliminary validation (TIMER) demon-
strates the effectiveness of configurable benchmark generation
in revealing evaluation biases undetectable with existing bench-
marks. By streamlining the creation of comprehensive benchmark
datasets, CuraBench represents a significant step toward responsi-
ble AI deployment, ensuring that models are rigorously tested in
environments that mirror their intended clinical use.
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1 Introduction
Healthcare AI evaluation faces critical limitations that hinder the
responsible deployment of AI systems in medical settings. Cur-
rent approaches fall short in two key aspects: inappropriate bench-
marks that rely on simplified test scenarios rather than real clinical
complexity [1] and lack of benefit specification [4]. For example,
many studies benchmark AI models using multi-choice question
answering datasets [8], such as the United States Medical Licensing
Examination (USMLE), which poorly represent real-world clinical
settings [12]. These standardized tests fail to capture the complexity
of actual clinical decision-making. They present simplified, ideal-
ized case presentations that do not reflect real patient care, which
involves temporal complexity, incomplete information, and contex-
tual ambiguity [7, 9, 10].

Furthermore, evaluations often lack clear specifications of ex-
pected clinical benefits, making it impossible to assess whether
AI tools deliver real-world value [3]. Additionally, these static ap-
proaches cannot accommodate diverse healthcare settings with
unique requirements, where context, patient populations, and work-
flows vary significantly across institutions and specialties [11, 14,
15]. For instance, evaluating AI for pediatric emergency depart-
ments requires different scenarios than geriatric oncology clinics.

While traditional benchmark creation attempts to address these
limitations through extensive manual curation by clinical experts [6,
13], this approach makes comprehensive evaluation prohibitively
expensive and time-consuming. Clinical experts must invest signif-
icant time reviewing patient records, formulating questions, and
validating responses and causal reasoning — a process that scales
poorly and creates bottlenecks in AI development cycles.

The critical gap in healthcare AI evaluation lies in creating rep-
resentative, context-specific benchmarks [3]. Such evaluation re-
quires representative datasets that enable customized, task-specific
assessments tailored to local clinical contexts. This necessitates a
systematic approach to benchmark generation that produces cu-
rated yet realistic scenarios matching diverse medical settings while
ensuring meaningful translation to real-world clinical values.
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2 CuraBench: A Configurable Benchmark
Generation System

We propose CuraBench, a benchmark dataset generation system
that facilitates adaptive AI evaluation across diverse healthcare
scenarios. The system addresses the fundamental limitations of
static benchmarks by operating on a comprehensive taxonomy,
accepting user-specified configurations, and generating tailored
benchmarks for specific evaluation needs. By leveraging real-world
healthcare data as the starting point, CuraBench produces curated
yet realistic scenarios that enable cost-effective verification of AI
benefits while maintaining clinical authenticity.

2.1 Multi-faceted Taxonomy and Architecture
CuraBench’s taxonomy includes various key configuration dimen-
sions and their corresponding possible values derived from elec-
tronic health records and clinical workflows, enabling systematic
customization of benchmark generation:
• Patient Demographics: Age, gender, race, socioeconomic status,
and geographic information to ensure evaluation across diverse
patient populations and identify potential disparities.

• Clinician Information: Specialty, level of training, role, and
institutional context to capture varied healthcare provider per-
spectives and needs across different care settings.

• Healthcare Tasks: Retrieval, diagnostic support (e.g., differential
diagnosis generation), care planning (e.g., treatment recommen-
dation), and clinical documentation (e.g., visit summarization)
spanning the broad spectrum of AI applications in healthcare [2].
The benchmark generation pipeline operates by accepting user-

specified configurations and systematically creating representative
benchmark sets from real patient EHRs. The system can generate di-
verse evaluation scenarios, from instruction-response pairs derived
from patient timeline chunks for evaluating longitudinal reasoning
capabilities [5], to diagnostic scenarios that test AI systems’ ability
to synthesize information across multiple clinical encounters and
generate causal reasoning. This flexibility allows healthcare orga-
nizations to create proxy golden evaluation sets that reflect their
specific patient populations, clinical workflows, and evaluation
priorities.

2.2 Foundational Work and Validation
Our approach expands upon preliminary investigations that demon-
strate the feasibility of generating clinical instructions using large
language models. We developed and validated TIMER [5], which
demonstrates the practical effectiveness of CuraBench’s benchmark
generation approach for addressing critical gaps in healthcare AI
evaluation. TIMER introduced a novel evaluation methodology that
creates timestamp-linked instruction-response pairs from longi-
tudinal EHR data, enabling systematic assessment of AI models’
temporal reasoning capabilities across patient histories.

This benchmark generation approach revealed previously un-
recognized biases in existing evaluation datasets, where over 55%
of questions focused only on the final 25% of patient timelines.
TIMER’s automatically generated benchmarks (TIMER-Eval) pro-
vided more comprehensive temporal coverage compared to human-
curated benchmarks like MedAlign, enabling detection of model ca-
pabilities that were previously unmeasurable due to evaluation lim-
itations. TIMER’s controlled temporal sampling strategies showed

that distribution-matched training demonstrated advantages up to
6.5% in temporal reasoning evaluation, highlighting how bench-
mark design directly impacts model performance.

Additionally, we generated instruction-response QA pairs across
5 core task categories and 261 distinct clinician personas, achiev-
ing 45% classification alignment with expert clinicians - a promis-
ing baseline that demonstrates feasibility for programmatic bench-
mark generation while highlighting opportunities for improvement.
These results collectively validate CuraBench’s core hypothesis that
configurable benchmark generation enables realistic contexts for
meaningful clinical AI evaluation.

2.3 Benchmark Quality Assurance
CuraBench can be used to evaluate both open-source and closed-
source LLMs with standardized metrics such as F1 score, ROUGE,
and task-specific measures. To ensure benchmark validity and clin-
ical relevance, CuraBench employs a comprehensive two-stage
quality control process: Stage 1 implements automated data se-
lection using classification models trained on clinician-annotated
preference data. We systematically compare the performance of
distilled LLM-as-a-judge versus multi-way classifiers to identify
high-quality benchmark candidates while maintaining computa-
tional efficiency. Stage 2 involves rigorous multi-faceted human
evaluation conducted by clinical fellows from multiple specialties,
ensuring cross-domain validity. Statistical analysis using Cohen’s
kappa coefficient measures inter-rater agreement, with established
thresholds ensuring evaluation consistency and clinical relevance
across generated benchmarks.

2.4 Long-term Vision and Impact
CuraBench could fundamentally reshape the healthcare AI develop-
ment lifecycle by enabling continuous evaluation throughout model
development. This paradigm shift toward configurable, context-
aware evaluation could accelerate responsible AI deployment while
addressing current bottlenecks where manual benchmark creation
requires months of expert time at costs exceeding $100,000 per
specialized evaluation. Healthcare organizations could adopt this
through phased implementation, starting with pilot evaluations in
specific departments before scaling to institution-wide AI assess-
ment frameworks that adapt to their evolving clinical needs.

3 Conclusion
CuraBench addresses critical limitations in healthcare AI evalua-
tion by providing a configurable, scalable solution, demonstrating
the potential to transform healthcare AI evaluation from static,
one-size-fits-all approaches to dynamic, context-aware assessment.
CuraBench enables healthcare organizations to create customized
evaluation datasets reflecting their specific patient populations
and clinical workflows. Our validation demonstrates feasibility for
programmatic benchmark generation. CuraBench represents a sig-
nificant step toward responsible AI deployment, providing tools to
rigorously verify AI benefits before clinical implementation.
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