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Problem and preliminaries

Brain network. Complex graphs with anatomic regions as
nodes and connectivities between the regions as links.
GNN explanation. Current GNN explanation models usually
produce a unique explanation subgraph for each graph sample
(e.g. GNNExplainer), or through the model-level explanation
(e.g. GAT), without considering the unique properties of brain
networks (i.e. fixed number and order of nodes under a given atlas)
and the characteristics of disease analysis (i.e. subjects with the
same disease may share similar connection patterns).

Motivation.
1) Unleash the prediction power of GNNs in brain analysis
2) Provide disease-specific explanation by a shared mask

Problem definition. Given a weighted brain network
G = (V,E, W), where V = {vi}

n
i=1 is the regions of interest node

set (ROIs), E = V× V is the edge set, and W ∈ Rn×n is the
weighted adjacency matrix describing connection strengths, the
model outputs a disease prediction y.
The interpretability is provided by learning a shared edge mask
M ∈ Rn×n to highlight the disease-specific prominent ROI
connections.
Neural system mapping. Partition the ROIs of brain networks
into eight neural systems based on structural and functional
roles under a specific atlas (e.g. AAL90 and Brodmann82).

The backbone BrainNN

Node features construction. Common node features such as
degree, binning degree, node2vec and degree profiles (LDP)

xi = [deg(vi); min(Di); max(Di); mean(Di); std(Di)] (1)

Edge-weight-aware message passing. To adopt valuable edge
weights, we construct the message vector mij ∈ RD by
concatenating node embeddings of i, j, and edge weight wij

m(l)
ij = MLPΘ

([
h(l)

i ; h(l)
j ; wij

])
(2)

Then aggregate messages from all neighbors followed by a
non-linear transformation

h(l)
i = σ

 ∑
j∈Ni∪{i}

m(l−1)
ij

 (3)

The graph-level embeddings can be obtained by summarizing
all node embeddings with residual connections. The training
objective for BrainNN is a supervised cross-entropy loss
(denoted as Lp) towards disease predictions.

The explanation generator

Shared edge mask as the explanation. Train the shared mask M by
maximizing the mutual information between the BrainNN predictions ŷ on
the original graph G and ŷ′ on the masked graph G′, where W ′ = W � σ(M).

Lm = −

C∑
c=1

1[y = c] log PΦ (y′ = y | G = W ′) (4)

Further apply a sparsity loss Ls to improve compactness and an element
wise entropy loss Le to encourage discreteness in mask weight values. Final
training objective:

L = Lm + Lp + Ls + Le (5)

Three-step training strategy. BrainNN-Explanation Generator-BrainNN
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𝐴1,𝐴2…

… …

𝑌

{wij}

{wij}

Shared Mask

𝑌′

G1

G2

𝐴𝑖⊙Hidden Layers

X1 X2

X4X3

Z1 Z2

Z4Z3

Hidden Layers

X1 X2

X4X3

Z1 Z2

Z4Z3

Figure: The proposed BrainNNExplainer trained in three-steps: the initial training of
BrainNN on the original data, the explanation generation based on trained BrainNN, and the
further adjustment of BrainNN based on the explanation masked graph.

Performance Comparison

Datasets. We use two real-world datasets, Human Immunodeficiency Virus
Infection (HIV) and Bipolar Disorder (BP).

Method
HIV BP

Accuracy AUC Accuracy AUC

M2E 50.61 51.53 57.78 53.63
MIC 55.63 56.61 51.21 50.12

MPCA 67.24 66.92 56.92 56.86
MK-SVM 65.71 68.89 60.12 56.78

GAT 68.58 67.31 61.31 59.93
GCN 70.16 69.94 64.44 64.24

DiffPool 71.42 71.08 62.22 62.54

BrainNN 74.29 71.67 71.11 64.71
BrainNNExplainer 77.14 75.00 75.56 69.88

Table: Performance of different models on HIV and BP
datasets. Our methods are colored in gray background and
the highest performance is highlighted in boldface.

Baselines. The
compared baselines
include both shallow
(i.e. M2E, MIC,
MPCA, MK-SVM) and
deep models (GAT,
GCN, DiffPool).
Results. Our
backbone BrainNN
outperforms all SOTA
baselines by up to
11%. The three-step
training with globally
shared mask achieves
a further performance
improvements of 5%.

Interpretability Analysis

Visualization. Use a threshold to obtain a explanation
subgraph G′s by removing low-weight edges from G′
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Figure: Comparison of explanation graph connectomes in brain networks of a
healthy control and a patient on HIV and BP datasets. The colors of 8 neural
systems are described as: VN, AN, BLN, DMN, SMN, SN, MN, CCN.

In the HIV dataset, the explanation subgraph of patients
excludes many interactions within the Default Mode Network
(DMN). For the BP patients, the connections within Bilateral
Limbic Network (BLN) are much more sparse.
Interpretation of important brain systems. Observing the most
manifest nodes with different comparative measures

Dataset Type
Comparative Measures

Degree Strength Cluster Coefficient

HIV
Normal DMN BLN CCN DMN BLN CCN DMN CCN BLN
Patient BLN CCN AN BLN CCN AN BLN

BP
Normal BLN SMN DMN BLN DMN SMN SMN VN DMN
Patient BLN DMN SMN BLN DMN SMN SMN VN

Table: Top ranked neural systems of the explanation subgraph on HIV and BP
for both Healthy Control (Normal) and Patient.

For HIV dataset, both healthy control and patients’ explanation
subgraphs reveal the importance of BLN, while DMN is
missing from all three metrics in the patient group. Regarding
BP dataset, BLN, SMN (Somato-Motor Network), and DMN are
prominent in both patient and healthy controls.
Community structure and modularity. Compare the
modularity of our explanation graph G′ against the original
graph G. The explained graph achieves about 5.10%-7.21%
improvement over the original graph based on multiple metrics.


