On Positional and Structural Node Features for Graph Neural Networks on Non-attributed Graphs Hejie Cui, Zijie Lu, Pan Li, and Carl Yang (hejie.cui, j.carlyang)@emory.edu

Department of Computer Science, Emory University, Atlanta, GA 30322, USA

EMORY UNIVERSITY

INSIGHT HIGHLIGHTS

Figure: Illustration of Position vs. Structure.

Position vs. Structure:

- A and B are *positionally close* having relatively close positions in the global network
- A and C are *structurally close* having relatively similar local neighborhood structures

Structural Node Classification

Aggr. Type Initial.

USA-air Brazil-air Europe-air

INTRODUCTION

STRUCTURAL NODE FEATURES

- **Privilege of GNNs on Common Graph Tasks** • Various powerful GNNs demonstrate privilege on graph data.
- GNNs combine *node features* and *graph structures* by aggregating node features through links into low-dimensional vector representations.
- Superior performance is mainly established when natural node features are available.

Challenge from Natural Features Missing

- A great number of graphs in the wild do not contain natural node features, due to privacy concerns and/or difficulties in data collection. • Several intuitive methods have been commonly practiced to initialize node features (e. g. random, degree-based, etc.).
- Question: How to choose artificial node features for GNNs on non-attributed graphs?

POSITIONAL NODE FEATURES

Structural node features help GNNs capture *local structural information* of nodes, such as degree information and neighborhood connection patterns. In the Figure, nodes A and C are structurally close. E.g. molecular network, where two nodes with similar neighbor patterns should be recognized as atoms with similar properties or functions. • **shared**: an initial feature vector is shared across all nodes (in the experiments we simply use a vector of all 1's)

- degree: the degree value is converted to a one-hot degree vector for each node, where the vector dimension is selected based on the max degree of all nodes
- pagerank: the original PageRank score of a given node is calculated and then flattened into a vector, where the dimension of the extended vector is selected by grid-search. Pagerank can be viewed as a generalized higher-order node degree information

00	51		ACC.(%)	ACC.(%)	ACC.(%)
Mean –	P	random	59.3±1.8	45.7 ± 5.9	$44.9 {\pm} 5.8$
		one-hot	59.2 ± 2.6	$48.6 {\pm} 7.4$	$44.0{\pm}0.7$
		eigen	55.3 ± 1.5	$40.0{\pm}6.9$	$31.6{\pm}2.1$
		deepwalk	58.1 ± 2.8	42.1±9.6	41.5 ± 3.3
		shared	$25.0{\pm}0.0$	$25.0 {\pm} 0.0$	$25.0{\pm}0.0$
	ç	degree	$53.8 {\pm} 1.9$	$48.6 {\pm} 4.1$	$42.7 {\pm} 2.7$
	ð	degree+	59.2 ± 2.7	$60.0 {\pm} 3.0$	$50.6 {\pm} 3.9$
		pagerank	39.7 ± 2.9	$47.9 {\pm} 7.4$	$25.9{\pm}0.0$
	ጣ	random	60.7±3.2	47.9 ± 7.4	$48.9{\pm}5.1$
		one-hot	59.2 ± 3.3	50.7 ± 8.5	$48.9 {\pm} 5.4$
	J	eigen	$67.8 {\pm} 2.5$	57.8 ± 5.3	$49.4{\pm}4.5$
Sum –		deepwalk	$68.8 {\pm} 3.0$	$65.0{\pm}6.4$	$54.1 {\pm} 2.8$
	S	shared	55.7±2.0	$61.4{\pm}4.7$	$45.4{\pm}1.0$
		degree	$63.6 {\pm} 3.0$	$70.0{\pm}4.1$	58.0 ± 3.6
		degree+	69.1±2.6	$\textbf{76.4}{\pm}\textbf{4.1}$	61.2±3.8
		pagerank	$58.8{\pm}2.0$	$73.6 {\pm} 5.4$	$45.9 {\pm} 1.0$
SOTA		struc2vec	63.8±1.6	73.6±9.6	58.8 ± 3.0

Table: Structural node classification results.

Observations

- **Aggregation**: sum >mean
- Cross Feature Type Comparison: (1) In most cases structural node features demonstrate superiority compared with positional ones; (2) Our proposed degree+ manifests the most distinct advantage over other positional features, new SOTA

Positional node features help GNNs capture *node distance information* regarding their relative positions in the graph. In Figure 1, nodes A and B are positional close. E.g. publication network, where two authors who cite each other and also cite / get cited by similar other authors should be recognized as sharing similar research interests considering their graph positions.

- random: a feature vector following random distribution. The random feature of each node varies among runs with difference random seeds.
- one-hot: a unique one-hot feature vector is initialized for each node

• eigen: eigen decomposition is performed on the normalized adjacency matrix and the top k eigen vectors are used to generate a k-dimensional feature vector for each node, where k is decided by grid search. • **deepwalk**: the initial feature of a node is generated based on DeepWalk algorithm [1] with walk length set as 40. (deep walk features with walk length longer than 2 can capture higher- order positional information).

Byproduct: New SOTA for Structural Node Classification

• **degree+**: divide degree values into buckets, then map the degrees in each bucket range into one class, and finally construct a unique one-hot vector for each class

EXPERIMENTAL RESULTS

Positional Node Classification

Agan	Туре	Footuro	Cora	Pubmed	Citeseer
Aggr.		reature	<i>Acc.</i> (%)	<i>Acc.</i> (%)	<i>Acc.</i> (%)
Mean -	P	random	56.1±1.6	42.3±1.4	36.0±1.0
		one-hot	$58.2 {\pm} 4.0$	51.4 ± 3.1	37.3 ± 2.5
		eigen	$73.2{\pm}2.3$	$70.0{\pm}4.8$	42.9 ± 2.3
		deepwalk	$75.3{\pm}1.0$	$74.0{\pm}2.6$	46.8±0.9
	S	shared	$17.9 {\pm} 0.0$	$38.6 {\pm} 0.0$	20.2±0.0
		degree	$37.4{\pm}2.1$	41.1 ± 2.9	36.0±1.3
		pagerank	$25.2{\pm}2.4$	$39.8{\pm}1.9$	20.5 ± 3.4
		real feat.	80.2±1.1	79.0±2.2	$68.0{\pm}4.0$
Sum	P	random	45.2±3.9	41.7±2.7	32.8±2.7
		one-hot	47.0 ± 3.7	$46.4 {\pm} 4.4$	33.0±1.8
		eigen	$70.5 {\pm} 5.1$	$68.8 {\pm} 4.1$	40.1 ± 5.0
		deepwalk	$70.0{\pm}2.3$	$72.5{\pm}2.2$	43.7 ± 2.7
	S	shared	17.1±5.2	33.3±6.4	22.3±4.6
		degree	50.7 ± 3.7	$42.6{\pm}1.8$	32.0±3.5
		<u> </u>	070 + 14	2201010	00.4 ± 1.0

• Within Feature Type Comparison: (1) Degree+ improves on degree by using a degree bucket, which alleviates the node degree sparsity and skewness problem; (2) Shared performs rather poorly; (3) Pagerank can be viewed as a generalized higher-order node degree. Its performance deterioration may arise from over-smoothing

Graph Classification

Aggr.	Тур.	Initial.	MUTAG Acc.(%)	PROTEINS Acc.(%)	IMDB-B Acc.(%)	IMDB-M <i>Acc.</i> (%)
Mean	P	random	$64.9 {\pm} 4.1$	$67.2 {\pm} 4.2$	58.0±2.9	36.1±1.9
		one-hot	$65.8 {\pm} 7.0$	$67.8 {\pm} 2.6$	56.9 ± 3.4	36.8 ± 3.2
		eigen	$63.8{\pm}2.1$	$60.4{\pm}1.0$	50.2 ± 1.3	$33.4{\pm}0.7$
		deepwalk	65.1 ± 8.3	$68.1 {\pm} 4.0$	52.1 ± 3.4	35.7 ± 1.9
	S	shared	$66.7 {\pm} 0.0$	$59.6 {\pm} 0.0$	$50.0{\pm}0.0$	33.3±0.0
		degree	84.4 ±7.7	$69.5 {\pm} 2.6$	$69.7 {\pm} 5.1$	$45.1{\pm}~2.6$
		pagerank	$66.5{\pm}1.9$	$68.0{\pm}5.5$	$54.4 {\pm} 4.0$	35.5 ± 1.7
		real feat.	$71.4{\pm}4.4$	$74.0{\pm}4.2$	-	-
Sum	P	random	66.9±7.1	67.5±4.1	$54.0{\pm}3.6$	36.2±2.1
		one-hot	65.1 ± 3.8	66.8 ± 3.8	$52.8{\pm}2.7$	$33.4{\pm}2.6$
		eigen	$65.4{\pm}7.7$	$69.0{\pm}4.1$	$69.3 {\pm} 4.6$	42.4 ± 3.4
		deepwalk	$64.2{\pm}8.6$	$66.2 {\pm} 4.2$	$51.9{\pm}2.8$	35.3 ± 3.0
	S	shared	79.9±6.7	69.1±4.5	67.9±2.8	43.3±4.6
		degree	$84.0 {\pm} 8.4$	69.3 ± 3.3	$68.9 {\pm} 2.5$	$44.9 {\pm} 4.1$
		pagerank	77.3 ± 7.6	69.9±3.1	70.3±2.9	48.2±3.2

Resources

pagerank 27.8±4.4 33.0±6.3 23.4±1.3 real feat. 70.5 ± 3.7 75.4 ± 3.7 59.3 ± 4.0

Table: Positional node classification results

Observations

• Aggregation: mean >sum

• Cross Feature Type Comparison: Most positional node features achieve much better performance than structural node features

• Within Feature Type Comparison: (1) Random and one-hot achieve comparable results; (2) Among all positional features, deep-walk and eigen demonstrate the best performance across all the datasets

real feat. 83.0 ± 6.3 73.8±2.6

Table: Graph classification results.

Observations

• **Aggregation**: sum >mean • Cross Feature Type Comparison: Though the best performance is not consistently achieved on a particular feature, it always falls in structural node features

• Within Feature Type Comparison: (1) Pagerank demonstrates better performance in most of the cases; (2) Degree feature on MUTAG and pagerank feature on PROTEIN with sum aggregator surpass real features