
How Can Graph Neural Networks Help Document Retrieval:
A Case Study on CORD19 with Concept Map Generation

Hejie Cui, Jiaying Lu, Yao Ge, Carl Yang
(corresponding: j.carlyang@emory.edu)

Department of Computer Science, Emory University, Atlanta, GA 30322, USA

Contribution Highlights

How has the COVID-19 pandemic impacted violent crimes in society?
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Figure: An overview of GNN-based document retrieval.

In this work, we explore how GNNs can help document
retrieval with generated concept maps, consisting of:
•Use constituency parsing to construct semantically

rich concept maps from documents and design
quality evaluation towards document retrieval.

• Investigate two types of graph models for document
retrieval: the structure-oriented complex GNNs and
our proposed semantics-oriented graph functions.

•Compare the retrieval results from different graph
models and provide insights towards GNN model
design for textual retrieval.

Introduction
Background
•Concept map models texts as a graph with

words/phrases as vertices and relations be-
tween them as edges.

•Empowered by the structured document rep-
resentation of concept maps, it is intriguing
to apply powerful GNNs for tasks like docu-
ment classification and retrieval.

GNNs for Document Retrieval
Follow the common two-step practice for the
large-scale document retrieval tasks:
•Step 1: initial retrieval on the whole corpus

with full texts using BM25.
•Step 2: re-rank with GNN models: construct

concept map G = {V, E} for the top 100 candi-
date document and apply GNNs on each in-
dividual concept map, where node represen-
tation hi ∈ Rd is updated through neighbor-
hood transformation and aggregation. The
graph-level embedding hG ∈ Rd is summa-
rized over all nodes with a read-out function.

•Given a triplet (Q, Gp, Gn) composed by a rel-
evant document Gp and an irrelevant docu-
ment Gn to the query Q, the triplet loss func-
tion:
L(Q, Gp, Gn) = max{S(Gn | Q) − S(Gp | Q) + margin, 0},

where S (G | Q) =
hG·hQ

∥hG∥∥hQ∥, hG is the learned
graph representation and hQ is the query rep-
resentation from a pretrained model.

•Retrieval in the testing phrase: documents
are ranked according to the learned relevance
score S(G | Q).

ConceptMap Generation
•Concept map distill structured information

hidden under unstructured text and repre-
sent it with a graph.

•Existing methods based on name entity
recognition (NER) or relation extraction (RE)
suffer from limited nodes and sparse edges,
rely on significant training data and prede-
fined entities and relation types.

•We propose to use POS-tagging and con-
stituency parsing to increase node/edge cov-
erage, thus bolstering the semantic richness
of the generated concept maps for retrieval.
The interactions among extracted nodes are
constructed by sliding window.

GNN-based CP
Representation
Type 1: Structure-oriented complex GNNs
•The discriminative power of structure-

oriente complex GNNs stems from the 1-WL
test for graph isomorphism.

•We adopt two state-of-the-art ones, Graph
isomorphism network (GIN) and Graph at-
tention network (GAT).

Type 2: Semantics-oriented permutation
invariant graph functions
In contrast, we propose a series of
semantics-oriented graph functions:
•N-Pool: independently process each single

node vi by multi-layer perceptions and then
apply a read-out function to aggregate node
embeddings ai into the graph embedding hG,
i.e.,

hG = READOUT
(
{MLP(ai) | vi ∈ V}

)
.

•E-Pool: the edge embedding of each edge eij =
(vi, vj) is obtained by concatenating the node
embedding ai and aj on its two ends to encode
first-order interactions, i.e.,
hG = READOUT

({
cat(MLP(ai), MLP(aj)) | eij ∈ E

})
.

•RW-Pool: for each sampled random walk
pi = (v1, v2, . . . , vm) that encode higher-order
interactions among concepts, the embedding
is computed by the sum of all node embed-
dings on it, i.e.,

hG = READOUT
(
{sum(MLP(a1), MLP(a2),

. . . , MLP(am)) | pi ∈ P}
)

.

They preserve the message passing mechanism
of complex GNNs while focusing on the basic
semantic units and different level of
interactions between them.

Experiment andAnalysis (1/2)

I. Evaluation of Concept Maps

Table: The similarity of different concept map pairs.

Pair Type # Pairs NCR (%) NCR+ (%) ECR (%) ECR+ (%)
Pos-Pos 762,084 4.96 19.19 0.60 0.78
Pos-Neg 1,518,617 4.12 11.75 0.39 0.52
(t-score) - (187.041) (487.078) (83.569) (105.034)
Pos-BM 140,640 3.80 14.98 0.37 0.43
(t-score) - (126.977) (108.808) (35.870) (56.981)

→ Concept maps can indicate query
document relevance and provide additional
discriminative signals based on the initial
candidates.

Experiment andAnalysis (2/2)

II. Retrieval Performance Results

Table: The retrieval performance of different models.

Type Methods
Precision (%) Recall (%) NDCG (%)
k=10 k=20 k=10 k=20 k=10 k=20

Traditional BM25 55.20 49.00 1.36 2.39 51.37 45.91
Anserini 54.00 49.60 1.22 2.25 47.09 43.82

Structure-Oriented GIN 35.24 34.36 0.77 1.50 30.59 29.91
GAT 46.48 43.26 1.08 2.00 42.24 39.49

Semantics-Oriented
N-Pool 58.24 52.20 1.38 2.41 53.38 48.80
E-Pool 59.60 53.88 1.40 2.49 56.11 51.16

RW-Pool 59.84 53.92 1.42 2.53 56.19 51.41

•Structural-oriented GNNs fail to improve the
baselines (BM25, Anserini).

•Semantics-oriented graph functions yield sig-
nificant and consistent improvements over
both baselines and structure-oriented GNNs.

•Demonstrate the potential of designing
semantics-oriented GNNs for textual reason-
ing tasks such as classification, retrieval, etc.

III. Stability and Efficiency
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Figure: Stability and efficiency comparison of different
graph models.

•Semantics-oriented functions perform more
stable and improve efficiently during train-
ing.

•E-Pool and RW-Pool are consistently better
than N-Pool, revealing the utility of simple
graph structures.

•RW-Pool converges slower but achieves bet-
ter and more stable results in the end, indicat-
ing the potential advantage of higher-order
interactions.
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