Interpretable Graph Neural Networks for Connectome-Based Brain Disorder Analysis

Hejie Cui, Wei Dai, Yanqiao Zhu, Xiaoxiao Li, Lifang He, and Carl Yang (corresponding: j.carlyang@emory.edu)

Department of Computer Science, Emory University, Atlanta, GA 30322, USA

Contribution Highlights

Figure: An overview of our proposed framework.

The whole training pipeline of IBGNN+:

- The backbone model is first trained on the original data
- Then, the explanation generator learns *a globally* shared mask across subjects
- Finally, we enhance the backbone by *applying the learned explanation mask* and fine-tune the model

Introduction

Brain Networks

- Brains lie at the core of neurobiological systems
- Mapping the connections of the brain as a network is one of the most pervasive paradigms in neuroscience (Nodes: anatomic regions; Edges: connectivities between the regions)
- Interpretable models on brain networks are vital

Graph Neural Networks (GNNs)

- GNNs have emerged and proved its power for analyzing graph-structured data.
- Compared with shallow models → universal expressiveness to capture the sophisticated connectome structures
- However, as a family of deep models, it is prone to overfitting and lack of transparency and interpretation in predictions!

GNN Explanation

- Existing work mostly focus on general graphs and node-level prediction task and produce a unique explanation for each subject when applied to graph-level tasks
- For brain networks, subjects with the same disorder share similar connection patterns and brain networks possess unique properties
- Our Motivations: (1) Unleash the prediction power of GNNs for brain network analysis; (2) Investigate disease-specific patterns common across the group and provide interpretations of different levels

PROBLEM DEFINITION

- **Input**: a set of N weighted brain networks, for each network G = (V, E, W), $V = \{v_i\}_{i=1}^{M}$ is the Regions Of Interest (ROIs) node set of size M; $E = V \times V$ is the edge set of brain connectome; $W \in \mathbb{R}^{M \times M}$ is the weighted adjacency matrix describing the connection strengths between ROIs
- Output: A prediction \hat{y}_n for each subject n; A disorder-specific interpretation matrix $M \in \mathbb{R}^{M \times M}$ shared across all subjects, highlighting disorder-specific biomarkers

IBGNN+

Module 1: The Backbone Model IBGNN

• Message Vector: concatenate embeddings of a node v_i , its neighbor v_j , and edge weight w_{ij}

$$m_{ij}^{(l)} = \text{MLP}_1\left(\left[\boldsymbol{h}_i^{(l)}; \boldsymbol{h}_j^{(l)}; w_{ij}\right]\right)$$

Propagation Rule

$$m{h}_i^{(l)} = \xi\left(\sum_{v_j \in \mathcal{N}_i \cup \{v_i\}} m{m}_{ij}^{(l-1)}
ight)$$

 Readout Function: summarize all node embeddings to a graph-level one, with MLP and residual connections

$$z = \sum_{i \in V} h_i^{(L)}, \qquad g = \text{MLP}_2(z) + z$$

Training Objectives: cross-entropy

$$\mathcal{L}_{\text{CLF}} = -\frac{1}{N} \sum_{n=1}^{N} (y_n \log(\hat{y}_n) + (1 - y_n) \log(1 - \hat{y}_n))$$

Module 2: The Globally Shared Explanation Generator

• Maximize the agreement between the predictions \hat{y} on the original graph G and \hat{y}' on an explanation graph G' = (V, E, W') induced by a masking matrix M, where $W' = W \odot \sigma(M)$,

$$\mathcal{L}_{\text{MASK}} = -\frac{1}{N} \sum_{n=1}^{N} \sum_{c=1}^{C} \mathbb{1} \left[\hat{y}_n = c \right] \log P_{\Phi} \left(\hat{y}'_n = \hat{y}_n \mid G'_n \right)$$

• Two regularization terms: encourage the compactness of the explanation and the discreteness of the mask values

$$\mathcal{L}_{\text{SPS}} = \sum_{i,j} \boldsymbol{M}_{i,j}, \quad \mathcal{L}_{\text{ENT}} = -(\boldsymbol{M} \log(\boldsymbol{M}) + (1 - \boldsymbol{M}) \log(1 - \boldsymbol{M}))$$

Training Objectives

$$\mathcal{L} = \mathcal{L}_{\text{CLF}} + \alpha \mathcal{L}_{\text{MASK}} + \beta \mathcal{L}_{\text{SPS}} + \gamma \mathcal{L}_{\text{ENT}}$$

Enhancing the Backbone with the Learned Explanation: IBGNN+

 Apply the shared global explanation mask to individual brain networks → predictions and interpretations are produced in a closed-loop for brain network analysis

PREDICTION PERFORMANCE

Method	HIV			BP			PPMI		
	Accuracy	F1	AUC	Accuracy	F1	AUC	Accuracy	F1	AUC
M2E	57.14 _{±19.17}	53.71 _{±19.80}	57.50 _{±18.71}	52.56 _{±13.86}			78.69 _{±1.78}	45.81 _{±4.17}	50.39 _{±2.59}
MIC	$54.29 \scriptstyle{\pm 18.95}$	$53.63{\scriptstyle \pm 19.44}$	$55.42 \scriptstyle{\pm 19.10}$	$62.67{\scriptstyle\pm20.92}$	$63.00{\scriptstyle \pm 21.61}$	$61.79{\scriptstyle \pm 21.74}$	$79.11{\scriptstyle\pm2.16}$	$49.65 \scriptstyle{\pm 5.10}$	$52.39 \scriptstyle{\pm 2.94}$
MPCA	$67.14{\scriptstyle\pm20.25}$	$64.28 \scriptstyle{\pm 23.47}$	$69.17{\scriptstyle\pm20.17}$	$52.56{\scriptstyle\pm13.12}$	$50.43{\scriptstyle \pm 14.99}$	$52.42 \scriptstyle{\pm 13.69}$	$79.15{\scriptstyle \pm 0.57}$	$44.18 \scriptstyle{\pm 0.18}$	$50.00{\scriptstyle \pm 0.00}$
MK-SVM	$65.71{\scriptstyle\pm7.00}$	$62.08 \scriptstyle{\pm 7.49}$	$65.83{\scriptstyle \pm 7.41}$	$57.00{\scriptstyle \pm 8.89}$	$41.08 \scriptstyle{\pm 13.44}$	$53.75 \scriptstyle{\pm 8.00}$	$79.15{\scriptstyle \pm 0.57}$	$44.18 \scriptstyle{\pm 0.18}$	$50.00{\scriptstyle \pm 0.00}$
GCN	70.00 _{±12.51}	68.35 _{±13.28}	73.58 _{±9.49}	55.56±13.86	50.71 _{±11.75}	61.55 _{±28.77}	$78.55{\scriptstyle\pm1.58}$	47.87 _{±4.40}	59.43 _{±8.64}
GAT	$71.43{\scriptstyle \pm 11.66}$	$69.79 \scriptstyle{\pm 10.83}$	$77.17{\scriptstyle\pm9.42}$	$63.34{\scriptstyle\pm9.15}$	$60.42{\scriptstyle\pm7.56}$	$67.07{\scriptstyle\pm5.98}$	$79.02{\scriptstyle \pm 1.25}$	$45.85{\scriptstyle \pm 3.16}$	$64.40{\scriptstyle \pm 6.87}$
PNA	$57.14{\scriptstyle\pm12.78}$	$45.09 \scriptstyle{\pm 19.62}$	$57.14{\scriptstyle\pm12.78}$	$63.71{\scriptstyle\pm11.34}$	$55.54{\scriptstyle\pm14.06}$	$60.30{\scriptstyle \pm 11.89}$	$79.36{\scriptstyle \pm 1.84}$	$51.76 \scriptstyle{\pm 10.32}$	$54.71{\scriptstyle\pm6.77}$
BrainNetCNN	$69.24 \scriptstyle{\pm 19.04}$	$67.08 \scriptstyle{\pm 11.11}$	$72.09 \scriptstyle{\pm 19.01}$	$65.83{\scriptstyle\pm20.64}$	$64.74 \scriptstyle{\pm 17.42}$	$64.32 \scriptstyle{\pm 13.72}$	$55.20{\scriptstyle \pm 12.63}$	$\underline{55.45}_{\pm 9.15}$	$52.54 \scriptstyle{\pm 10.21}$
BrainGNN	$74.29 \scriptstyle{\pm 12.10}$	$73.49 \scriptstyle{\pm 10.75}$	$75.00{\scriptstyle \pm 10.56}$	$68.00{\scriptstyle \pm 12.45}$	$62.33{\scriptstyle \pm 13.01}$	$74.20{\scriptstyle \pm 12.93}$	$69.17 \scriptstyle{\pm 0.00}$	$44.19 \scriptstyle{\pm 0.00}$	$45.26{\scriptstyle \pm 3.65}$
IBGNN	82.14 _{±10.81} *	82.02 _{±10.86} *	86.86 _{±11.65} *	$73.19_{\pm 12.20}$	$72.87_{\pm 12.09}^{*}$	83.64 _{±9.61} *	79.82 _{±1.47}	51.58±4.66	70.65 _{±6.55} *
IBGNN+	$84.29_{\pm 12.94}^{*}$	$83.86 \scriptstyle{\pm 13.42}^*$	$88.57_{\pm 10.89}^{*}$	$76.33_{\pm 13.00}^{*}$	$76.13_{\pm 13.01}^{*}$	$84.61 \scriptstyle{\pm 9.08}^*$	$\underline{79.55_{\pm 1.67}}$	$56.58 \scriptstyle{\pm 7.43}$	$72.76_{\pm 6.73}^{*}$

- Backbone IBGNN outperforms shallow/deep baselines (up to 11% absolute improvement)
- The explanation enhanced IBGNN+ further improve the backbone by 9.7% relatively
- IBGNN+ can effectively highlight the disorder-specific signals while achieving the benefit of restraining random noises

Interpretation Analysis

Neural System Mapping

 ROIs on brain networks can be partitioned into different neural systems

I. Salient ROIs

Figure: Salient ROIs on the explanation enhanced brain networks for Health Control (HC) and Patient.

- Group-level & Individual-level interpretations on which ROIs contribute most to the prediction of a specific disorder:
 - HIV: anterior cingulate, paracingulate gyri, inferior frontal gyrus
 - **BP**: secondary visual cortex and medial to superior temporal gyrus
 - **PPMI**: rostral middle frontal gyrus and superior frontal gyrus
- The observed salient ROIs can be potential biomarkers to identify brain disorders.

II. Important Connections

Figure: Important connections on the explanation enhanced brain connection network. Edges connecting nodes within the same neural system (VN, AN, BLN, DMN, SMN, SN, MN, CCN) are colored accordingly.

- HIV: patients excludes rich interactions within the DMN and VN systems
- **BP**: connections within **BLN** system of patients are much sparser
- **PPMI**: connectivity in patients decreases in the SMN and DMN systems

RESOURCES

Paper

Code