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(a) 2.5 D UNet++ structure

(b) Pipeline of  the proposed pulmonary vessel segmentation framework 

• We propose a 2.5D convolution network, which employs the 2D
convolutional network on a stack of adjacent slices and fuses the
features extracted from three orthogonal axes.
• A whole automated segmentation framework is given and the
segmentation result is refined by the graph information of pulmonary
vessel tree.
• Our method gives a competitive performance and ranks 1st till
now on DICE Similarity Coefficient and Precision compared with
other state-of-the-art methods.

• Pulmonary vessel segmentation is important for clinical diagnosis
of pulmonary diseases, while is also challenging due to its
complicated structure.
• In this work, we present an effective framework and refinement

process of pulmonary vessel segmentation from chest computed
tomographic (CT) images.

Experimental Results
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2.5D Network Based on U-Net++

Orthogonal Fusion of Multi-planar Networks

Two-Stage Loss Function

Vessel Structure Generation
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where ;Y= represents the top N loss value selected from the sorted list
of negative samples and N is the number of elements in positive list.

To alleviate the class-imbalance problem caused by the inequitable
penalty of positive and negative voxels, we separate the training
process as two stage:

v In the pre-trained stage, we
use Negative Log Likelihood
loss to get a coarse model;

v In the fine-tuned stage, we
adopt a weight-balanced loss:

• Slice radius is introduced, where slices within the radius will go
through one of three separated identical up-sampling, down-
sampling and convolution process, which is composed by a stack
of VGG blocks.

• The input channel is 9, and the ground-truth of the middle slice
will be provided. The upper and lower 4 pieces of the middle slice
are used to generate the feature maps.

• The output channel of the 2.5D network is 2, indicating the voxel-
wise probability of being foreground or background.

• The slice groups along three axes are processed in parallel.
• These three parallel results of each direction are then fused

under the comparison of different methods, including intersection,
union and average value.

• By jointing together the intra and inter slice features extracted
along three orthogonal axis, we optimize the description of
volumetric feature representation to be more integral and
comprehensive.

• We generate the morphology representation of tree-like graph
from the skeleton of segmentation result.

• The topological structure represented by edges and nodes also
indicates meaningful information for clinical practice.

Structures Min Dice Max Dice Avg. Dice Precision/Recall

2D U-net++ 0.5201 0.7376 0.6628 0.6629/0.6767 

3D U-Net++ 0.4385 0.8038 0.7286 0.7425/0.7436 

2.5D U-Net++ 0.8779 0.9627 0.9262 0.9310/0.9272 

The visual comparison between the ground truth and result of the 2.5D Average Orthogonal Fused U-Net++ 

Methods Min Dice Max Dice Avg. Dice Precision/Recall

Axial 0.8618 0.9584 0.9162 0.9250/0.9144

Sagittal 0.8444 0.9575 0.9114 0.9232/0.9080

Coronal 0.7474 0.9547 0.8964 0.9024/0.9020

Union 0.8252 0.9580 0.9118 0.8714/0.9634

Intersection 0.7946 0.9555 0.9096 0.9518/0.8772

Average 0.8779 0.9627 0.9262 0.9310/0.9272

• Comparation of the single axis model with three fusion methods,
including intersection, union and average value. The average value
does best one in keeping information of three axes.

• Comparation of the average fused 2.5D network structure with
several state-of-the-art network structures, including 2D U-
Net++, 3D U-Net++ as well as several 3D FCNs.

Qualitative results of average fusion 2.5D U-Net++ on more CT images 


