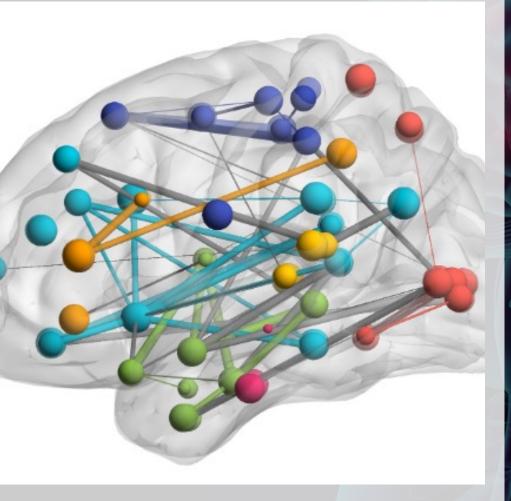
BrainGB: A Benchmark for Brain Network Analysis with Graph Neural Networks

Presented by **Hejie CUI**

hejie.cui@emory.edu
https://hejiecui.com/

Hejie Cui¹, Wei Dai¹, Yanqiao Zhu², Xuan Kan¹, Antonio Chen¹, Joshua Lukemire³, Liang Zhan⁴, Lifang He⁵, Ying Guo³, Carl Yang^{1[†]}

¹ Department of Computer Science, Emory University
² UCLA
³ Department of Biostatistics and Bioinformatics
⁴ Department of ECE, University Pittsburgh
⁵ Department of CSE, Lehigh University
[†] Corresponding Author


- 1. Preliminaries
- 2. Brain Network Dataset Construction
- 3. GNN Baselines for Brain Network Analysis
- 4. Experiments
- **5**. Discussion and Extensions

September 14, 2022

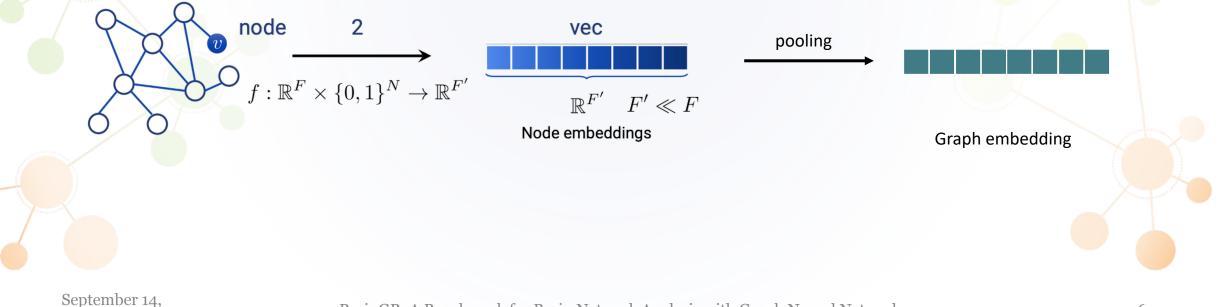
- 1. Preliminaries
- 2. Brain Network Dataset Construction
- 3. GNN Baselines for Brain Network Analysis
- 4. Experiments
- 5. Discussion and Extensions

September 14, 2022

Brain Networks

- Human brain are at the center of neurobiological systems.
- The interactions between brain regions are key driving factors for disorder analysis.

 \rightarrow Brain network: composed by nodes representing brain regions and edges representing interactions between them.


Brain Network Analysis

- Input: a brain network dataset of N subjects $D = \{G_n, y_n\}_{n=1}^N$
 - $G_n = \{V_n, E_n\}$: brain network of subject *n*
 - *y_n*: prediction label (e.g., neural diseases)
- Properties:
 - In D, $\forall n, V_n = V = \{v_i\}_{i=1}^M$
 - $W_n \in \mathbb{R}^{M \times M}$ describes the connection strengths between ROIs: real-valued and noisy
- Output: a prediction \hat{y}_n for each subject n
 - can be further analyzed for biomarkers

September 14, 2022

Graph Neural Networks

- Goal: efficient feature learning for machine learning on graphs
- Low-dimensional node embeddings encode both structural and attributive information

September 12 2022

The Uniqueness of Brain Networks

- Lack of initial node (ROI) features
- Real-valued connection weights can be both + or –
- The fixed ROI identities and orders across individual graphs

→ The design of GNN models for brain network should be customized to fit its unique nature

Challenges

• Step 1: brain network construction

- Restricted data accessibility
- Sophisticated brain imaging preprocessing and network construction processes that differ across modalities
- Step 2: analyze the resulting brain connectivity
 - Establish a standard evaluation pipeline based on fair experimental settings, metrics and modular-designed baselines

Overview

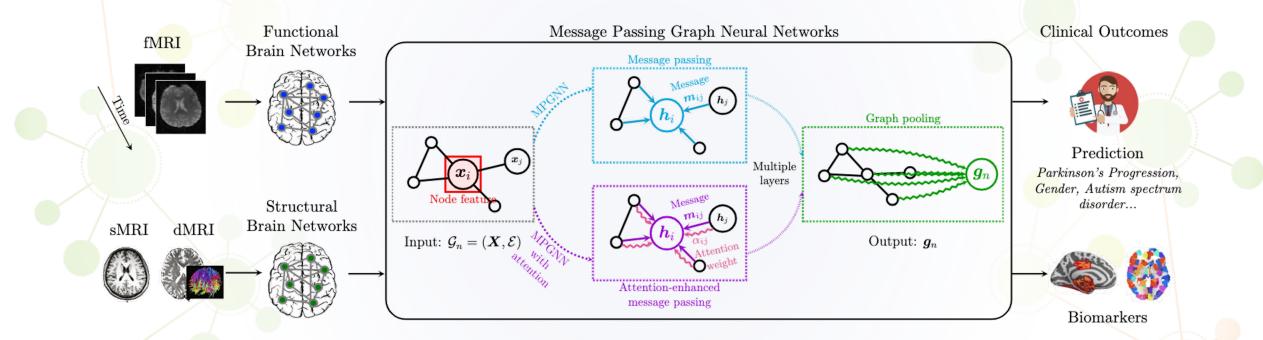


Fig. 1. Overview of BrainGB framework for brain network analysis with graph neural networks.

September 14, 2022

- 1. Preliminaries
- 2. Brain Network Dataset Construction
- 3. GNN Baselines for Brain Network Analysis
- 4. Experiments
- 5. Discussion and Extensions

September 14, 2022

Neuroimaging Acquisition

- Various medical imaging techniques: MRI, EEG, PET, etc.
- Magnetic-Resonance Imaging (MRI) are the most widely used for brain analysis research.
 - Function MRI (fMRI)
 - \rightarrow functional brain networks

describe correlations between time series signals of brain regions

• Diffusion Tensor Imaging (DTI)

→ structural brain networks *describe the physical connectivity between gray matter regions*

September 14, 2022

Challenges in Dataset Construction

- Raw MRI data is not directly usable for brain network construction and analysis → complicated preprocessing pipeline.
- Preprocessing steps are distinctive across modalities.
- The functionality of existing software tools varies. For dMRI, none existing software contains all the necessary preprocessing capabilities.

Functional Brain Network Construction

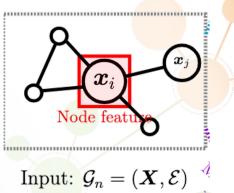
	Functional MRI Data	Functional MRI Data Preprocessing							ANTs	Nilearn		
	Brain Extra		./	\checkmark	\checkmark		\checkmark	\checkmark	~			
	Remove voxels not necessary for analysis such as	v	v									
				Ī								
	Slice-Timing Co		1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
	Adjust for the fact that each slice in the volume i	is taken at a different time, not all at once	· ·		•							
								1	7	1		
	Motion Correction/I	,	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	,				
	Correct movement made during scanning by alignin	\checkmark						\checkmark				
								(a a th			
	Co-registra	,	~	\checkmark	\checkmark	√	1	✓				
	Align participant's functional images with the an	\checkmark										
	Normalizat	,	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
	Wrap the data across subjects to a ten	\checkmark										
					11							
	Smoothin		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			
	Perform weighted averages of individua	\checkmark										
	I enform weighted averages of mulvidua											
	Functional Brain Netw	Description of the General Market										
	Brain Region Parcellation	Construct Network		Recommended Software: CONN, GraphVar,								
Seg	ment each subject into the ROI defined by the given atlas	Calculate pairwise correlations between ROIs as edges	Brain Connectivity Toolbox									
555	ment each subject into the first defined by the given and	carcalate pair mise conclusions between reors as eages										

Fig. 2: The framework of fMRI data preprocessing and functional brain network construction procedures, with recommended tools for each step shown on the right. The more commonly-used tools for the functional modality are placed at the front.

September 14, 2022

Structural Brain Network Construction

Diffusion MRI Data Preprocessing	FSL	AFNI	Free Surfer	Track Vis	3D Slider	Tortoise	MRtrix3	DSI Studio	
Eddy-current and Head Motion Correction Align all raw images to the b0 image to correct for head motion and eddy current distortions	\checkmark	\checkmark	√		\checkmark	√	\checkmark	\checkmark	
EPI Induced Susceptibility Artifacts Correction Correct the spatially nonlinear distortions caused by B ₀ inhomogeneities in Echo-planar imaging	√	\checkmark	√		\checkmark	\checkmark	√		
Brain Extraction Remove voxels not necessary for analysis such as bone, dura, air, etc., leaving just the brain	\checkmark	\checkmark	\checkmark		\checkmark		√	1	
Reconstruct Local Diffusion Pattern Fit a diffusion tensor model at each voxel on preprocessed and eddy current corrected data	\checkmark	√	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1	
Tractography Reconstruct brain connectivity graphs using brain tractography algorithms like FACT	✓	\checkmark		\checkmark	√		√	\checkmark	
Brain Region Parcellation Parcellate ROIs from T1-weighted structural MRI	✓	\checkmark				√	\checkmark	\checkmark	
Structural Brain Network Construction Construct Network Compute the network based on the generated label and the reconstructed whole brain tractography	Recommended Software: FSL, Metric, DSI Studio								


Fig. 3: The framework of dMRI data preprocessing and structural brain network construction procedures, with recommended tools for each step shown on the right. The more commonly-used tools for the structural modality are placed at the front.

September 14, 2022

- 1. Preliminaries
- 2. Brain Network Dataset Construction
- 3. GNN Baselines for Brain Network Analysis
- 4. Experiments
- 5. Discussion and Extensions

September 14, 2022

M1: Node Feature Construction

- **Identity**: unique one-hot feature for each node
- **Eigen:** eigen decomposition performed on the weighted matrix, then the top *k* eigenvectors are used to generate a *k* dimensional feature vector for each node.
- **Degree**: degree value as a one-dimensional vector
- Degree profile: $x_i = [\deg(v_i) \parallel \min(\mathcal{D}_i) \parallel \max(\mathcal{D}_i)$ $\parallel \max(\mathcal{D}_i) \parallel \operatorname{std}(\mathcal{D}_i)],$
- Connection profile: the corresponding row for each node in the edge weight matrix

M2: Message Passing Mechanisms

Message passing

$$oldsymbol{m}_{i}^{l} = \sum_{j \in \mathcal{N}_{i}} oldsymbol{m}_{ij} = \sum_{j \in \mathcal{N}_{i}} M_{l} \left(oldsymbol{h}_{i}^{l}, oldsymbol{h}_{j}^{l}, w_{ij}
ight),
onumber \ oldsymbol{h}_{i}^{l+1} = U_{l} \left(oldsymbol{h}_{i}^{l}, oldsymbol{m}_{i}^{l}
ight),$$

- Edge weighted:
- Bin concat:

$$oldsymbol{m}_{ij} = oldsymbol{h}_j \cdot w_{ij}.$$

$$\boldsymbol{m}_{ij} = \mathrm{MLP}(\boldsymbol{h}_j \parallel \boldsymbol{b}_t).$$

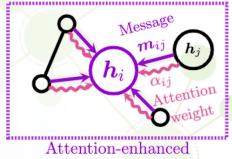
• Edge weight concat:
$$w_{ij} = \|_1^d w_{ij} = w_{ij} \| w_{ij} \| \dots \| w_{ij},$$

 $m_{ij} = \text{MLP}(h_j \| w_{ij}).$

Node edge concat:
Node concat:

$$oldsymbol{m}_{ij} = \mathrm{MLP}(oldsymbol{h}_i \parallel oldsymbol{h}_j \parallel w_{ij}).$$
 $oldsymbol{m}_{ij} = \mathrm{MLP}(oldsymbol{h}_i \parallel oldsymbol{h}_j).$

September 14, 2022


BrainGB: A Benchmark for Brain Network Analysis with Graph Neural Networks

Message passing

Message

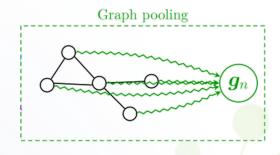
M3: Attention-enhanced Message Passing

• Attention weighted: $m_{ij} = h_j \cdot \alpha_{ij}$. $\alpha_{ij} = \frac{\exp\left(\sigma\left(a^{\top}\left[\Theta x_i \parallel \Theta x_j\right]\right)\right)}{\sum_{k \in \mathcal{N}(i) \cup \{i\}} \exp\left(\sigma\left(a^{\top}\left[\Theta x_i \parallel \Theta x_k\right]\right)\right)},$

message passing

- Edge weighted w/ attn:
- Attention edge sum:

$$m{m}_{ij} = m{n}_j \cdot lpha_{ij} \cdot w_{ij}.$$
 $m{m}_{ij} = m{h}_j \cdot (lpha_{ij} + w_{ij}).$


- Node edge concat w/attn:
- Node concat w/attn:

$$oldsymbol{m}_{ij} = \mathrm{MLP}(oldsymbol{h}_i \parallel (oldsymbol{h}_j \cdot lpha_{ij}) \parallel w_{ij}).$$

$$\boldsymbol{m}_{ij} = \mathrm{MLP}(\boldsymbol{h}_i \parallel (\boldsymbol{h}_j \cdot \alpha_{ij})).$$

September 14, 2022

M4: Pooling Strategies

In the second stage of GNNs, a feature vector for the whole graph is computed using the pooling strategy *R*, $g_n = R(\{h_i \mid v_i \in \mathcal{G}_n\}).$

• Mean pooling:

$$oldsymbol{g}_n = rac{1}{M} \sum_{k=1}^{N_n} oldsymbol{h}_k.$$
 $oldsymbol{g}_n = \sum^M oldsymbol{h}_k.$

• Sum pooling:

$$oldsymbol{g}_n = \parallel_{k=1}^M oldsymbol{h}_i = oldsymbol{h}_1 \parallel oldsymbol{h}_2 \parallel \ldots \parallel oldsymbol{h}_k.$$

k=1

- 1. Preliminaries
- 2. Brain Network Dataset Construction
- 3. GNN Baselines for Brain Network Analysis
- 4. Experiments
- 5. Discussion and Extensions

September 14, 2022

Datasets

- Human Immunodeficiency Virus Infection (HIV)
 functional
- Philadelphia Neuroimaging Cohort (PNC)
 - functional
- Parkinson's Progression Markers Initiative (PPMI)
 - structural
- Adolescent Brain Cognitive Development Study (ABCD)
 - functional

Modular Performance Report

Tab.2. Performance report (%) of different message passing GNNs in the four-modular design space with other two representative baselines on four datasets.

Module	Method	HIV			PNC			PPMI			ABCD			
Module		Accuracy	F1	AUC	Accuracy	F1	AUC	Accuracy	F1	AUC	Accuracy	F1	AUC	
Node Features	Identity Eigen Degree Degree profile Connection profile	$\begin{array}{c} 50.00 \pm 0.00 \\ 65.71 \pm 2.86 \\ 44.29 \pm 5.35 \\ 50.00 \pm 0.00 \\ 65.71 \pm 13.85 \end{array}$	$\begin{array}{c} 33.33 \pm 0.00 \\ 65.45 \pm 2.69 \\ 35.50 \pm 6.10 \\ 33.33 \pm 0.00 \\ 64.11 \pm 13.99 \end{array}$	$\begin{array}{c} 46.73 \scriptstyle \pm 10.57 \\ 65.31 \scriptstyle \pm 2.89 \\ 42.04 \scriptstyle \pm 4.00 \\ 50.00 \scriptstyle \pm 0.00 \\ \textbf{75.10 \scriptstyle \pm 16.95} \end{array}$	$\begin{array}{c} 57.34{\scriptstyle\pm 0.17}\\ 51.40{\scriptstyle\pm 3.92}\\ 63.89{\scriptstyle\pm 2.27}\\ 51.40{\scriptstyle\pm 7.21}\\ 69.83{\scriptstyle\pm 4.15}\end{array}$	36.44±0.17 48.63±5.42 59.69±3.85 33.80±3.21 66.20±4.74	$\begin{array}{c} 52.58 \pm 4.80 \\ 50.18 \pm 7.57 \\ 70.25 \pm 4.38 \\ 50.00 \pm 0.00 \\ \textbf{76.69} \pm 5.04 \end{array}$	$\begin{array}{c} 79.25{\scriptstyle\pm0.24} \\ 74.09{\scriptstyle\pm2.77} \\ 79.52{\scriptstyle\pm2.31} \\ 77.02{\scriptstyle\pm1.97} \\ 77.99{\scriptstyle\pm2.78} \end{array}$	$\begin{array}{c} 44.21 \pm 0.08 \\ 47.36 \pm 4.26 \\ 49.40 \pm 5.17 \\ 49.45 \pm 3.51 \\ 52.96 \pm 4.52 \end{array}$	$\begin{array}{c} 59.65{\scriptstyle\pm 6.80}\\ 49.21{\scriptstyle\pm 1.58}\\ 59.73{\scriptstyle\pm 4.31}\\ 58.65{\scriptstyle\pm 2.44}\\ \textbf{65.77}{\scriptstyle\pm 4.09}\end{array}$	$\begin{array}{r} 49.97{\scriptstyle\pm 0.13} \\ 50.79{\scriptstyle\pm 0.82} \\ 63.46{\scriptstyle\pm 1.29} \\ 49.92{\scriptstyle\pm 0.11} \\ 82.42{\scriptstyle\pm 1.93} \end{array}$	$\begin{array}{c} 33.32 \pm 0.06 \\ 50.79 \pm 0.83 \\ 63.45 \pm 1.28 \\ 33.30 \pm 0.05 \\ 82.30 \pm 2.08 \end{array}$	$\begin{array}{c} 50.00 \scriptstyle \pm 0.20 \\ 51.18 \scriptstyle \pm 1.16 \\ 68.16 \scriptstyle \pm 1.41 \\ 50.00 \scriptstyle \pm 0.00 \\ \textbf{91.33 \scriptstyle \pm 0.77 } \end{array}$	
Message Passing	Edge weighted Bin concat Edge weight concat Node edge concat Node concat	$\begin{array}{c} 50.00 \pm 0.00 \\ 50.00 \pm 0.00 \\ 51.43 \pm 2.86 \\ 65.71 \pm 13.85 \\ 70.00 \pm 15.91 \end{array}$	$\begin{array}{c} 33.33 \pm 0.00 \\ 33.33 \pm 0.00 \\ 44.36 \pm 6.88 \\ 64.11 \pm 13.99 \\ 68.83 \pm 17.57 \end{array}$	$\begin{array}{c} 49.80 \scriptstyle \pm 4.20 \\ 49.39 \scriptstyle \pm 9.25 \\ 48.16 \scriptstyle \pm 10.13 \\ 75.10 \scriptstyle \pm 16.95 \\ \textbf{77.96} \scriptstyle \pm 8.20 \end{array}$	$\begin{array}{c} 64.87{\scriptstyle\pm}5.44\\ 54.74{\scriptstyle\pm}5.88\\ 63.68{\scriptstyle\pm}3.31\\ 69.83{\scriptstyle\pm}4.15\\ 70.63{\scriptstyle\pm}2.35\end{array}$	59.70±7.04 36.42±3.97 60.27±5.97 66.20±4.74 67.12±1.81	69.98±4.19 61.68±3.91 67.34±3.02 76.69±5.04 78.32±1.42	$\begin{array}{c} 79.25{\scriptstyle\pm0.24} \\ 79.25{\scriptstyle\pm0.24} \\ 79.25{\scriptstyle\pm0.24} \\ 77.99{\scriptstyle\pm2.78} \\ 78.41{\scriptstyle\pm1.62} \end{array}$	$\begin{array}{c} 44.21 \scriptstyle \pm 0.08 \\ 44.21 \scriptstyle \pm 0.08 \\ 44.21 \scriptstyle \pm 0.08 \\ 52.96 \scriptstyle \pm 4.52 \\ 54.46 \scriptstyle \pm 3.08 \end{array}$	62.26±2.80 52.67±7.16 59.72±4.65 65.77±4.09 68.34±1.89	$\begin{array}{c} 74.47{\scriptstyle\pm1.17} \\ 53.72{\scriptstyle\pm4.97} \\ 64.59{\scriptstyle\pm1.30} \\ 82.42{\scriptstyle\pm1.93} \\ 80.50{\scriptstyle\pm2.27} \end{array}$	$\begin{array}{c} 74.36{\scriptstyle\pm1.23} \\ 43.26{\scriptstyle\pm1.243} \\ 64.30{\scriptstyle\pm1.43} \\ 82.30{\scriptstyle\pm2.08} \\ 80.10{\scriptstyle\pm2.47} \end{array}$	$\begin{array}{c} 82.37{\scriptstyle\pm1.46} \\ 61.86{\scriptstyle\pm5.79} \\ 70.63{\scriptstyle\pm1.02} \\ 91.33{\scriptstyle\pm0.77} \\ \textbf{91.36{\scriptstyle\pm0.92}} \end{array}$	
Message Passing w/ Attention	Attention weighted Edge weighted w/ attn Attention edge sum Node edge concat w/ attn Node concat w/ attn	$\begin{array}{c} 50.00{\scriptstyle\pm0.00}\\ 50.00{\scriptstyle\pm0.00}\\ 51.43{\scriptstyle\pm7.00}\\ 72.86{\scriptstyle\pm11.43}\\ 71.43{\scriptstyle\pm9.04}\end{array}$	33.33±0.00 33.33±0.00 49.13±5.65 72.52±11.72 70.47±9.26	$\begin{array}{c} 49.80{\scriptstyle\pm8.52}\\ 42.04{\scriptstyle\pm15.63}\\ 54.49{\scriptstyle\pm15.67}\\ 78.37{\scriptstyle\pm10.85}\\ \textbf{82.04{\scriptstyle\pm11.21}}\end{array}$	65.09±2.21 62.90±1.22 61.51±2.86 67.66±5.07 68.85±6.42	$\begin{array}{c} 60.74 \scriptstyle{\pm 4.89} \\ 61.14 \scriptstyle{\pm 0.57} \\ 55.36 \scriptstyle{\pm 4.76} \\ 64.69 \scriptstyle{\pm 5.36} \\ 64.29 \scriptstyle{\pm 10.15} \end{array}$	69.79±4.24 69.74±2.37 69.38±3.50 74.52±1.20 75.36±5.09	$\begin{array}{c} 79.25{\scriptstyle\pm0.24} \\ 79.25{\scriptstyle\pm0.24} \\ 79.11{\scriptstyle\pm0.40} \\ 77.30{\scriptstyle\pm1.52} \\ 78.41{\scriptstyle\pm1.43} \end{array}$	$\begin{array}{c} 44.21 \scriptstyle \pm 0.08 \\ 44.21 \scriptstyle \pm 0.08 \\ 44.17 \scriptstyle \pm 0.12 \\ 50.96 \scriptstyle \pm 4.20 \\ 49.98 \scriptstyle \pm 1.87 \end{array}$	$\begin{array}{c} 63.24{\scriptstyle\pm3.77}\\ 54.92{\scriptstyle\pm4.80}\\ 60.47{\scriptstyle\pm6.26}\\ 63.93{\scriptstyle\pm4.89}\\ \textbf{68.14{\scriptstyle\pm5.01}}\end{array}$	$\begin{array}{c} 77.74 \pm 0.97 \\ 78.04 \pm 1.96 \\ 75.71 \pm 1.52 \\ 83.10 \pm 0.47 \\ 83.19 \pm 0.93 \end{array}$	77.70±1.01 77.81±2.33 75.59±1.68 83.03±0.52 83.12±0.96	85.10±1.10 86.86±0.63 83.78±0.82 91.85±0.29 91.55±0.59	
Pooling Strategies	Mean pooling Sum pooling Concat pooling	47.14±15.39 57.14±9.04 65.71±13.85	$\begin{array}{c} 41.71{\scriptstyle\pm17.36} \\ 52.23{\scriptstyle\pm12.65} \\ 64.11{\scriptstyle\pm13.99} \end{array}$	58.78±18.63 57.96±11.15 75.10±16.95	66.86±2.33 60.13±2.87 69.83±4.15	61.39±4.88 53.96±7.61 66.20±4.74	74.20±3.39 66.11±4.22 76.69±5.04	$\begin{array}{c} 79.25 \pm 0.24 \\ 79.39 \pm 0.52 \\ 77.99 \pm 2.78 \end{array}$	$\begin{array}{c} 44.21 \scriptstyle \pm 0.08 \\ 47.68 \scriptstyle \pm 3.12 \\ 52.96 \scriptstyle \pm 4.52 \end{array}$	59.64±5.47 61.29±2.11 65.77±4.09	81.13±0.35 77.48±3.75 82.42±1.93	81.06±0.34 76.96±4.58 82.30±2.08	88.49±1.12 87.90±0.65 91.33±0.77	
Other Baselines	BrainNetCNN BrainGNN	60.21±17.16 62.98±11.15	60.12±13.56 60.45±8.96	$70.93{\scriptstyle \pm 4.01} \\ 68.03{\scriptstyle \pm 9.16}$	71.93±4.90 70.62±4.85	$\begin{array}{c} 69.94 \scriptstyle \pm 5.42 \\ 68.93 \scriptstyle \pm 4.01 \end{array}$	78.50±3.28 77.53±3.23	77.24±2.09 79.17±1.22	50.24±3.09 44.19±3.11	58.76±8.95 45.26±3.65	85.1±0.92 OOM	85.7±0.83 OOM	93.5±0.34 OOM	

September 14,

Observations

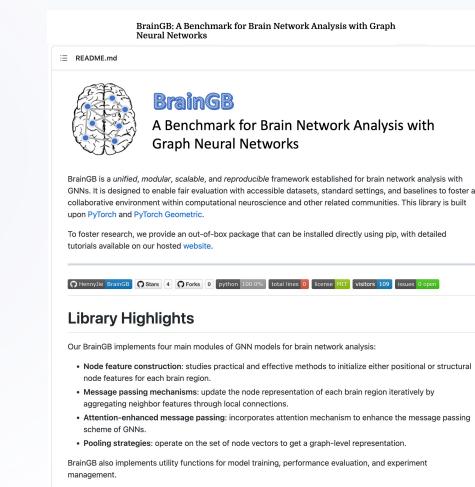
- Node features: the <u>connection profile</u> captures the whole picture of structural information in the brain network and preserves rich information on pairwise connections used to perform brain parcellation.
- Message passing: <u>node concat</u> reinforces self-representation of the central node during each step of message passing.
- Attention-enhanced message passing: the attention mechanism utilizes learnable attention weights in addition to the fixed edge weights in the aggregation and update process of GNNs.
- **Pooling strategies**: in <u>concat pooling</u>, the final node representations of all the brain regions are kept in the graph-level representation for classifiers.

September 14, 2022

- 1. Preliminaries
- 2. Brain Network Dataset Construction
- 3. GNN Baselines for Brain Network Analysis
- 4. Experiments
- **5**. Discussion and Extensions

September 14, 2022

Contributions


- A unified, modular, scalable, and reproducible framework for brain network analysis with GNNs
- Summarize the preprocessing and construction pipelines for both functional and structural brain networks
- Decompose the design space of GNNs for brain network analysis into four modules:
 - (a) node features
 - (b) message passing mechanisms
 - (c) attention mechanisms
 - (d) pooling strategies.
- Conduct a variety of empirical studies and suggest a set of general recipes for effective GNN designs

Resources

- Website: <u>https://brainnet.us/</u>
 - tutorials
 - examples
 - preprocessing and brain network construction instruction
- Out-of-box Python package that can be easily installed by pip
 - Source code:

https://github.com/HennyJie/BrainGB

BrainGB |

Installation

BrainGB

To install BrainGB as a package, simply run

September 14, 2022

Limitations

- **Graph structure mysteriousness**: for brain networks, what kinds of graph structures (e.g., communities, subgraphs) are effective beyond the pairwise connections are still unknown.
- **Limited Datasets**: the small size of neuroimaging datasets may limit the effectiveness and generalization ability of complex deep learning models.

Future Directions

 Neurology-driven GNN designs: to design the GNN architectures based on neurological understanding of predictive brain signals, especially disease-specific ones.

• **Pre-training and transfer learning of GNNs**: to design techniques that can train complex GNN models across studies and cohorts. Besides, information sharing across different diseases could lead to a better understanding of cross-disorder commonalities.

September 14, 2022

