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Brain Networks
• Human brain are at the center of

neurobiological systems.
• The interactions between brain regions are

key driving factors for disorder analysis.
→ Brain network: composed by nodes
representing brain regions and edges
representing interactions between them.

September 14, 2022 4BrainGB: A Benchmark for Brain Network Analysis with Graph Neural Networks



Brain Network Analysis

• Input: a brain network dataset of N subjects 𝐷 = {𝐺! , 𝑦!}!"#$

• 𝐺! = 𝑉!, 𝐸! : brain network of subject 𝑛
• 𝑦!: prediction label (e.g., neural diseases)

• Properties:
• In 𝐷, ∀𝑛, 𝑉! = 𝑉 = 𝑣" "#$%

• 𝑊! ∈ ℝ%×% describes the connection strengths between ROIs: real-
valued and noisy

• Output: a prediction (𝑦! for each subject 𝑛
• can be further analyzed for biomarkers
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Graph Neural Networks

• Goal: efficient feature learning for machine learning on graphs
• Low-dimensional node embeddings encode both structural and

attributive information
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Graph embedding

pooling
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The Uniqueness of Brain Networks

• Lack of initial node (ROI) features
• Real-valued connection weights can be both + or –
• The fixed ROI identities and orders across individual graphs

→ The design of GNN models for brain network should be
customized to fit its unique nature
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Challenges

• Step 1: brain network construction
• Restricted data accessibility
• Sophisticated brain imaging preprocessing and network construction

processes that differ across modalities
• Step 2: analyze the resulting brain connectivity
• Establish a standard evaluation pipeline based on fair experimental

settings, metrics and modular-designed baselines
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Overview
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Fig. 1. Overview of BrainGB framework for brain network analysis with graph neural networks.
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Neuroimaging Acquisition

• Various medical imaging techniques: MRI, EEG, PET, etc.
• Magnetic-Resonance Imaging (MRI) are the most widely used

for brain analysis research.
• Function MRI (fMRI)
→ functional brain networks
describe correlations between time series signals of brain regions

• Diffusion Tensor Imaging (DTI)
→ structural brain networks
describe the physical connectivity between gray matter regions

September 14, 
2022 11BrainGB: A Benchmark for Brain Network Analysis with Graph Neural Networks



Challenges in Dataset Construction

• Raw MRI data is not directly usable for brain network
construction and analysis→ complicated preprocessing pipeline.
• Preprocessing steps are distinctive across modalities.
• The functionality of existing software tools varies. For dMRI,

none existing software contains all the necessary preprocessing
capabilities.
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Functional Brain Network Construction
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Structural Brain Network Construction
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M1: Node Feature Construction

• Identity: unique one-hot feature for each node
• Eigen: eigen decomposition performed on the weighted matrix,

then the top 𝑘 eigenvectors are used to generate a 𝑘 dimensional
feature vector for each node.
• Degree: degree value as a one-dimensional vector
• Degree profile:

• Connection profile: the corresponding row for each node in
the edge weight matrix
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M2: Message Passing Mechanisms

Message passing

• Edge weighted:
• Bin concat:
• Edge weight concat:

• Node edge concat:
• Node concat:
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M3: Attention-enhanced Message Passing

• Attention weighted:

• Edge weighted w/ attn:
• Attention edge sum:
• Node edge concat w/attn:
• Node concat w/attn:
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M4: Pooling Strategies

In the second stage of GNNs, a feature vector for the whole graph
is computed using the pooling strategy 𝑅,

• Mean pooling:

• Sum pooling:

• Concat pooling:
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Datasets

• Human Immunodeficiency Virus Infection (HIV)
• functional

• Philadelphia Neuroimaging Cohort (PNC)
• functional

• Parkinson’s Progression Markers Initiative (PPMI)
• structural

• Adolescent Brain Cognitive Development Study (ABCD)
• functional
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Modular Performance Report
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Tab.2. Performance report (%) of different message passing GNNs in the four-modular design space 
with other two representative baselines on four datasets. 



Observations
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• Node features: the connection profile captures the whole picture of
structural information in the brain network and preserves rich information
on pairwise connections used to perform brain parcellation.
• Message passing: node concat reinforces self-representation of the central

node during each step of message passing.
• Attention-enhanced message passing: the attention mechanism utilizes

learnable attention weights in addition to the fixed edge weights in the
aggregation and update process of GNNs.
• Pooling strategies: in concat pooling, the final node representations of all 

the brain regions are kept in the graph-level representation for classifiers.
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Contributions
• A unified, modular, scalable, and reproducible framework for brain 

network analysis with GNNs
• Summarize the preprocessing and construction pipelines for both functional 

and structural brain networks 
• Decompose the design space of GNNs for brain network analysis into four 

modules: 
• (a) node features
• (b) message passing mechanisms
• (c) attention mechanisms
• (d) pooling strategies. 

• Conduct a variety of empirical studies and suggest a set of general recipes for 
effective GNN designs
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Resources

• Website: https://brainnet.us/
• tutorials
• examples
• preprocessing and brain network

construction instruction

• Out-of-box Python package that can
be easily installed by pip
• Source code:

https://github.com/HennyJie/BrainGB
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Limitations

• Graph structure mysteriousness: for brain networks, what
kinds of graph structures (e.g., communities, subgraphs) are
effective beyond the pairwise connections are still unknown.

• Limited Datasets: the small size of neuroimaging datasets may
limit the effectiveness and generalization ability of complex deep
learning models.
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Future Directions

• Neurology-driven GNN designs: to design the GNN
architectures based on neurological understanding of predictive
brain signals, especially disease-specific ones.

• Pre-training and transfer learning of GNNs: to design
techniques that can train complex GNN models across studies and
cohorts. Besides, information sharing across different diseases
could lead to a better understanding of cross-disorder
commonalities.
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