## Data-Efficient Brain Connectome Analysis via Multi-Task Meta-Learning

Yi Yang<sup>1\*</sup>, Yanqiao Zhu<sup>2\*</sup>, Hejie Cui<sup>1</sup>, Xuan Kan<sup>1</sup>, Lifang He<sup>3</sup>, Ying Guo<sup>1</sup>, Carl Yang<sup>1</sup>

<sup>1</sup>Emory University, <sup>2</sup>University of California Los Angeles, <sup>3</sup>Lehigh University \* Equal contribution

#### Content

- 1. Background and Motivation
- 2. Preliminaries and Related Work
- 3. Data-Efficient Training
- 4. Dataset and Experimental Configurations
- 5. Brain Network Oriented Design Considerations
- 6. Conclusions and Discussions

## Background & Motivation – Scarcity of Neuroimaging Data

- Brain network data is usually collected through various techniques such as functional magnetic resonance imaging (fMRI) or diffusion tensor imaging (DTI)
- The data collection process is costly and expensive which leads to severe scarcity of available training resources and data instances
- Modern machine learning techniques on complex topological data requires sufficiently large samples to achieve effective domain knowledge extraction and discriminative power



#### **Related Work – GNNs & Meta-Learning**

#### **Graph Neural Networks**

- > GNN is powerful in learning topological relational information among nodes and edges
- > BrainGNN (Li et al. 21') proposed ROI aware graph convolution layer and selective pooling layer
- > With limited training samples, GNN suffers poor performance result and high variances

#### Meta-Learning on Graphs

- Mostly surveyed on applicability and feasibility of joint learning on multiple objectives
- Shared substructure learning may not adapt well on dense brain connectomes



Kipf 16' Graph Convolutional Networks

#### **Problem Formulation**

- ▶ We consider the brain network data with carefully parcellated ROIs and correlations as edge weighted graph  $G_i = (V_i, \mathcal{E}_i, A_i)$  where the connectivity is represented by a node set  $\mathcal{V}$  and an edge set  $\mathcal{E} = \mathcal{V} \times \mathcal{V}$
- ➢ Our objective is to train an encoder model f<sub>θ</sub>(·) such that θ efficiently converges to optimal θ<sup>\*</sup> on target dataset D<sup>t</sup> given that θ<sub>0</sub> is initialized via proper pre-training or meta-training on source datasets D<sup>s</sup> = {S<sub>1</sub>, S<sub>2</sub>, ..., S<sub>k</sub>}, where |D<sup>s</sup>| > |D<sup>t</sup>|
- > In our simplified setting, considering the multiview and multimodality nature of brain network dataset, we regard each view as an independent training objective. That is, given a dataset  $\mathcal{D}$  with k modalities, our learning pipeline will extract k tasks into the task distribution  $\tau$ .

## **Overall Pipeline**



Adaptive Reweighing

#### Data Efficient Training – Single Task Transfer Learning

- The first stage involves pre-training the encoder f<sub>θ</sub>(·) on a single source task and its corresponding objective
- We use the binary cross entropy loss objective for graph classification

$$\mathcal{L}_{\text{BCE}} = -\frac{1}{|\mathcal{D}|} \sum_{(\mathcal{G}_i, y_i) \sim \mathcal{D}} y_i \log \sigma(f_{\theta}(\mathcal{G}_i)) + (1 - y_i) \log(1 - \sigma(f_{\theta}(\mathcal{G}_i)))$$

- We then fine-tune the model on target task and evaluate by cross validation
- Sensitive and vulnerable to knowledge gaps between source and target domain

Algorithm 1 Single-task supervised transfer learning (STT) 1: **Input:** pre-train task *S*, fine-tune task *T*, encoder  $f(\theta)$ 2: **Require:**  $\alpha$ : learning rate hyperparameter 3: Randomly initialize  $\theta$ 4: ▶ Pre-training phase 5: while not done do Evaluate the gradient  $\nabla_{\theta} \mathcal{L}_{S} f(\theta)$ 6: Update parameters with SGD:  $\theta \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}_{S} f(\theta)$ 7: 8: end while 9: ▶ Fine-tuning phase 10: Split T into  $T_{\text{train}}$  and  $T_{\text{eval}}$  into K folds 11: **for** split **in** *K* folds **do** Get split-specific parameters  $\hat{\theta} \leftarrow \theta$ 12: while not done do 13: Evaluate the gradient  $\nabla_{\hat{\theta}} \mathcal{L}_{T_{\text{train}}} f(\hat{\theta})$ 14: Update parameters with SGD  $\hat{\theta} \leftarrow \hat{\theta} - \alpha \nabla_{\hat{\theta}} \mathcal{L}_{T_{\text{train}}} f(\hat{\theta})$ 15: end while 16: Evaluate ACC, AUC from  $f_{\hat{\theta}}(T_{\text{eval}})$ 17: 18: end for

#### Data Efficient Training – Multi-task Meta-Learning

- > Transitioning to multi-task transfer learning (MTT): extending into multi-task setting where  $f_{\theta}(\cdot)$  is pre-trained according to an aggregated (e.g., sum) loss objective
- MTT has limited generalizability power due to the joint training objective
- State-of-the-art meta-learning (Finn et al.
  17') architecture demonstrates robustness in generalizing knowledge across domains

| Algorithm 2 Multi-task meta-learning (MML)                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1: <b>Input:</b> meta-train task pool $S_{\tau}$ , meta-test task $T$ , encoder $f(\theta)$                                                                        |
| 2: <b>Require:</b> $\alpha$ , $\beta$ : learning rate hyperparameters                                                                                              |
| 3: Randomly initialize $\theta$                                                                                                                                    |
| 4: ▶ Meta-training phase                                                                                                                                           |
| 5: while not done do                                                                                                                                               |
| 6: <b>for</b> each task $\tau_i$ <b>in</b> $S_{\tau}$ <b>do</b>                                                                                                    |
| 7: Sample k datapoints $\mathcal{D}_i$ from $\tau_i$                                                                                                               |
| 8: Evaluate the gradient $\nabla_{\theta} \mathcal{L}_{\mathcal{D}_i} f(\theta)$                                                                                   |
| 9: Compute the adapted parameters $\theta'_i \leftarrow \theta$ –                                                                                                  |
| $\beta \nabla_{\theta} \mathcal{L}_{\mathcal{D}_i} f(\theta)$                                                                                                      |
| 10: Sample another set of datapoints $\mathcal{D}'_i$ from $\tau_i$                                                                                                |
| 11: end for                                                                                                                                                        |
| 12: Update parameters $\theta \leftarrow \theta - \alpha \nabla_{\theta} \sum_{\mathcal{D}'_i, \theta'_i \sim S_{\tau}} \mathcal{L}_{\mathcal{D}'_i} f(\theta'_i)$ |
| 13: end while                                                                                                                                                      |
| 14: ▶ Meta-test phase                                                                                                                                              |
| 15: Perform <i>k</i> -fold evaluation on target tasks                                                                                                              |

#### **Dataset and Experimental Configuration**

- > Datasets: [1] BP (82 ROIs, 97 samples) [2] HIV (90 ROIs, 70 samples) [3] PPMI (84 ROIs, 718 samples)
- > Backbone encoders: [1] BrainNetCNN (Kawahara et al. 17') [2] GCN (Kipf et al. 17') [3] GAT (Veličković et al. 18')
- > Training configurations: We consider PPMI to be source dataset, BP and HIV as target dataset



## **Experimental Results**

Table 1: Performance comparison of our proposed methodologies and baselines in terms of area under the ROC curve (AUC) and accuracy (ACC). The best performing model is highlighted in boldface.

| Encodor     | Dataset | Modality    | DSL                                |                                    | STT                                |                                    | MTT                                |                                    | MML                                |                                    |
|-------------|---------|-------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| Encoder     |         |             | AUC                                | ACC                                | AUC                                | ACC                                | AUC                                | ACC                                | AUC                                | ACC                                |
| BrainNetCNN | BP      | fMRI<br>DTI | $0.50 \pm 0.13$<br>$0.47 \pm 0.16$ | $0.51 \pm 0.15$<br>$0.49 \pm 0.14$ | $0.55 \pm 0.07$<br>$0.53 \pm 0.11$ | $0.56 \pm 0.08$<br>$0.54 \pm 0.12$ | $0.56 \pm 0.09$<br>$0.54 \pm 0.07$ | $0.56 \pm 0.11$<br>$0.54 \pm 0.09$ | $0.57 \pm 0.10$<br>$0.55 \pm 0.13$ | $0.57 \pm 0.07$<br>$0.56 \pm 0.08$ |
|             | HIV     | fMRI<br>DTI | $0.60 \pm 0.15$<br>$0.54 \pm 0.16$ | $0.59 \pm 0.13$<br>$0.53 \pm 0.15$ | $0.66 \pm 0.14$<br>$0.60 \pm 0.09$ | $0.65 \pm 0.10$<br>$0.60 \pm 0.09$ | $0.66 \pm 0.13$<br>$0.60 \pm 0.10$ | $0.66 \pm 0.11$<br>$0.60 \pm 0.12$ | $0.67 \pm 0.12$<br>$0.57 \pm 0.11$ | $0.67 \pm 0.09$<br>$0.61 \pm 0.14$ |
| GAT         | BP      | fMRI<br>DTI | $0.51 \pm 0.13$<br>$0.50 \pm 0.09$ | $0.52 \pm 0.16$<br>$0.50 \pm 0.13$ | $0.57 \pm 0.07$<br>$0.53 \pm 0.08$ | $0.58 \pm 0.05$<br>$0.54 \pm 0.10$ | $0.59 \pm 0.10$<br>$0.51 \pm 0.06$ | $0.59 \pm 0.07$<br>$0.55 \pm 0.08$ | $0.61 \pm 0.07$<br>$0.55 \pm 0.08$ | $0.60 \pm 0.09$<br>$0.57 \pm 0.05$ |
|             | HIV     | fMRI<br>DTI | $0.61 \pm 0.15$<br>$0.56 \pm 0.17$ | $0.61 \pm 0.14$<br>$0.55 \pm 0.15$ | $0.65 \pm 0.07$<br>$0.61 \pm 0.07$ | $0.66 \pm 0.11$<br>$0.60 \pm 0.08$ | 0.66±0.09<br>0.62±0.09             | $0.68 \pm 0.06$<br>$0.61 \pm 0.10$ | $0.68 \pm 0.10$<br>$0.64 \pm 0.09$ | $0.69 \pm 0.08$<br>$0.62 \pm 0.12$ |
| GCN         | BP      | fMRI<br>DTI | $0.55 \pm 0.11$<br>$0.51 \pm 0.12$ | $0.54 \pm 0.14$<br>$0.52 \pm 0.11$ | $0.59 \pm 0.12$<br>$0.52 \pm 0.10$ | $0.58 \pm 0.13$<br>$0.54 \pm 0.12$ | $0.61 \pm 0.10$<br>$0.55 \pm 0.09$ | $0.60 \pm 0.11$<br>$0.56 \pm 0.14$ | 0.62±0.08<br>0.59±0.07             | 0.62±0.10<br>0.58±0.11             |
|             | HIV     | fMRI<br>DTI | 0.63±0.18<br>0.60±0.12             | 0.64±0.12<br>0.58±0.13             | $0.65 \pm 0.14$<br>$0.61 \pm 0.11$ | 0.68±0.15<br>0.60±0.12             | 0.67±0.12<br>0.63±0.13             | 0.68±0.11<br>0.63±0.15             | 0.69±0.10<br>0.65±0.12             | 0.70±0.09<br>0.64±0.13             |

#### **Atlas Transformation**

- Motivation: Cross dataset brain connectome analysis is challenged by incompatible and nonconvertible ROI definitions across datasets
- ► Learnable Linear Projections (LP): Emphasize on performing projection of the original input feature space by attaching a projection head  $W \in \mathbb{R}^{n \times k}$  in front of encoder  $f_{\theta}$
- Simple Auto-encoding (AE): Emphasize on obtaining fixed representation of original feature space. The projection matrix  $W \in \mathbb{R}^{n \times k}$  has the objective given as  $\arg \min_{W} || X - XWW^{T} ||^{2}$

| Table 2: Performance | with three | different atl | as transforma- |
|----------------------|------------|---------------|----------------|
| tion techniques.     |            |               |                |

| Dataset | Modality    | Zero Pad                             |                                      | L                                                              | P.                                                                                      | AE                     |                        |
|---------|-------------|--------------------------------------|--------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------|------------------------|
|         |             | AUC                                  | ACC                                  | AUC                                                            | ACC                                                                                     | AUC                    | ACC                    |
| BP      | fMRI<br>DTI | 0.62±0.08<br>0.59±0.07               | $0.62_{\pm 0.10} \\ 0.58_{\pm 0.11}$ | $0.62 \scriptstyle \pm 0.13 \\ 0.59 \scriptstyle \pm 0.09 \\ $ | $\begin{array}{c} 0.63 \pm_{0.12} \\ 0.60 \pm_{0.14} \end{array}$                       | 0.63±0.09<br>0.60±0.04 | 0.64±0.09<br>0.61±0.10 |
| HIV     | fMRI<br>DTI | $0.69_{\pm 0.10} \\ 0.65_{\pm 0.12}$ | $0.70_{\pm 0.09} \\ 0.64_{\pm 0.13}$ | $0.71 {\scriptstyle \pm 0.13} \\ 0.68 {\scriptstyle \pm 0.14}$ | $\begin{array}{c} 0.70 \scriptstyle \pm 0.11 \\ 0.66 \scriptstyle \pm 0.13 \end{array}$ | 0.73±0.10<br>0.69±0.06 | 0.72±0.08<br>0.69±0.08 |

#### **Task Adaptive Reweighing**

- Motivations: Base meta-learning framework fails to consider learning difficulty of different source tasks which leads to skewed and biased overall generalization.
- Analysis: We first investigate the relatedness of source (PPMI) and target (BP, HIV) data by visualizing a correlation derived from computed task embeddings (Achille et al. 19')
- Observation: High correlation corroborates with clinical studies on inter-connections among the investigated diseases suggesting that each source task does not contribute equally to the adaptation on target task.
- Solution: We leverage a dynamic and optimizable scheme for inner-loop hyperparameter (i.e., Learning rate, weight decay) selection inspired by (Baik et al. 20'). The taskspecific optimization is governed by a non-linear mapping function that the determines rate of convergence.

**Algorithm 3** Multi-task meta-learning with adaptive task reweighing (MMAR)

- 1: **Input:** meta-train tasks  $S_{\tau}$ , meta-test task T, encoder  $f(\theta)$ , hyperparameter generator  $g(\phi)$   $_{95}$
- Require: η: outer-loop learning rate
  Randomly initialize θ. φ

<del>)</del>0

#### Table 3: Performance with task reweighing techniques.

| Dataset                                                                       | Modality    | D                      | SL                     | M                      | ML                     | MMAR                   |                        |
|-------------------------------------------------------------------------------|-------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
|                                                                               |             | AUC                    | ACC                    | AUC                    | ACC                    | AUC                    | ACC                    |
| BP                                                                            | fMRI<br>DTI | 0.55±0.11              | 0.54±0.14<br>0.52±0.11 | 0.62±0.08              | 0.62±0.10              | 0.68±0.10              | 0.66±0.08              |
| HIV                                                                           | fMRI<br>DTI | 0.63±0.18<br>0.60±0.12 | 0.64±0.12<br>0.58±0.13 | 0.69±0.10<br>0.65±0.12 | 0.70±0.09<br>0.64±0.13 | 0.74±0.10<br>0.72±0.08 | 0.76±0.08<br>0.72±0.07 |
| <b>Fi</b> 12: Sample another set of datapoints $\mathcal{D}'_i$ from $\tau_i$ |             |                        |                        |                        |                        |                        |                        |

13: **end for** 

- 14: Update parameters  $\theta \leftarrow \theta \eta \nabla_{\theta} \sum_{\mathcal{D}'_i, \theta'_i \sim S_{\tau}} \mathcal{L}_{\mathcal{D}'_i} f(\theta'_i)$
- 15: Update parameters  $\phi \leftarrow \phi \eta \nabla_{\phi} \sum_{\mathcal{D}'_i, \theta'_i \sim S_{\tau}} \mathcal{L}_{\mathcal{D}'_i} f(\theta'_i)$

16: end while

17: Perform *k*-fold evaluation on target tasks

#### **Conclusions and Remarks**

- What we did: We proposed a data-efficient learning framework on brain network dataset. The framework is naturally generic and can be applied to broader spectrum of settings.
- Current limitations: [1] Brain networks are multimodal and a comprehensive feature extraction requires capturing shared knowledge across modalities. [2] Sampling data could be costly which motivates meta-optimization using less training instances.
- Future directions: We extend to unsupervised setting for model meta-training and explore on sampling-efficient strategies for brain network learning.

# **Thank You**