

Interpretable Graph Neural Networks for Connectome-Based Brain Disorder Analysis

Hejie Cui¹, Wei Dai¹, Yanqiao Zhu², Xiaoxiao Li³, Lifang He⁴, and Carl Yang¹

Presenter: Hejie Cui

Paper

Code

1. Introduction & Motivation

- 2. The Proposed Model: IBGNN+
 - The backbone model IBGNN
 - *The globally shared explanation generator*
 - Enhancing the backbone with the learned explanations
- 3. Experiments
- 4. Interpretation Analysis
- **5.** Conclusion & Future Work

Introduction: Brain Networks & GNNs

Brain Networks

- Human brains lie at the core of neurobiological systems
- Mapping the connections of the human brain as a network is one of the most pervasive paradigms in neuroscience
 - Nodes: anatomic regions
 - Edges: connectivities between the regions
- Interpretable models on brain networks are vital

Graph Neural Networks (GNNs)

- GNNs have emerged and proved its power for analyzing graph-structured data.
- Compared with shallow models → universal expressiveness to capture the sophisticated connectome structures
- However, as a family of deep models

Prone to overfitting and lack of transparency and interpretation in predictions!

Introduction: GNN Explanation

Image source: GNNExplainer: Generating Explanations for Graph Neural Networks

- ☐ Mostly focus on *general graphs* and *node-level* prediction task
- ☐ Produce a *unique explanation for each subject* when applied to graph-level tasks

Graph-level connectome-based disorder analysis

- ☐ Subjects having the same disorder *share* similar brain network patterns
- ☐ *Unique properties* of brain networks

Introduction: GNN Explanation

1. Introduction & Motivation

- 2. The Proposed Model: IBGNN+
 - The backbone model IBGNN
 - *The globally shared explanation generator*
 - Enhancing the backbone with the learned explanations
- 3. Experiments
- 4. Interpretation Analysis
- **5.** Conclusion & Future Work

Problem Definition

- Input: a set of N weighted brain networks, for each network G = (V, E, W)
 - $V = \{v_i\}_{i=1}^M$: Regions Of Interest (ROIs) node set of size M
 - $E = V \times V$: edge set of brain connectome
 - $W \in \mathbb{R}^{M \times M}$: weighted adjacency matrix describing the connection strengths between ROIs

• Output:

- A brain disorder prediction \hat{y}_n for each subject n
- A disorder-specific interpretation matrix $M \in \mathbb{R}^{M \times M}$ shared across all subjects, highlighting disorder-specific biomarkers

Overview of the Proposed Model: IBGNN+

Fig.1: An overview of our proposed framework

- The backbone model is first trained on the original data
- Then, the explanation generator learns a globally shared mask across subjects
- Finally, we enhance the backbone by applying the learned explanation mask and fine-tune the whole model

Module 1: The Backbone Model IBGNN

> Edge weights in brain networks can be **both positive and negative values**

Message Vector $m_{ij} \in \mathbb{R}^D$: concatenate embeddings of a node v_i and its neighbor v_j , and the edge weight w_{ij}

$$oldsymbol{m}_{ij}^{(l)} = ext{MLP}_1\left(\left[oldsymbol{h}_i^{(l)};\,oldsymbol{h}_j^{(l)};\,w_{ij}
ight]
ight)$$

Propagation Rule:

$$oldsymbol{h}_i^{(l)} = \xi \left(\sum
olimits_{v_j \in \mathcal{N}_i \cup \{v_i\}} oldsymbol{m}_{ij}^{(l-1)}
ight)$$

Readout Function: summarize all node embeddings to a graph-level one, with MLP and residual connections

$$oldsymbol{z} = \sum
olimits_{i \in V} oldsymbol{h}_i^{(L)} \quad oldsymbol{g} = \operatorname{MLP}_2(oldsymbol{z}) + oldsymbol{z}$$

<u>Training Objectives</u>: supervised cross-entropy $\mathcal{L}_{\text{CLF}} = -\frac{1}{N} \sum_{n=1}^{N} (y_n \log{(\hat{y}_n)} + (1-y_n) \log{(1-\hat{y}_n)})$

Module 2: The Globally Shared Explanation Generator

 \triangleright Learn a **globally shared edge mask** $M \in \mathbb{R}^{M \times M}$ that is applied to all brain network subjects in a dataset

Maximize the agreement between the predictions \hat{y} on the original graph G and \hat{y}' on an explanation graph G' = (V, E, W') induced by a masking matrix M, where $W' = W \odot \sigma(M)$

$$\mathcal{L}_{\text{MASK}} = -\frac{1}{N} \sum_{n=1}^{N} \sum_{c=1}^{C} \mathbb{1}[\hat{y}_n = c] \log P_{\Phi} \left(\hat{y}'_n = \hat{y}_n \mid G'_n \right)$$

Two regularization terms: encourage the compactness of the explanation and the discreteness of the mask values

$$\mathcal{L}_{ ext{ iny SPS}} = \sum_{i,j} oldsymbol{M}_{i,j} \qquad \mathcal{L}_{ ext{ iny ENT}} = -(oldsymbol{M} \log(oldsymbol{M}) + (1-oldsymbol{M}) \log(1-oldsymbol{M}))$$

<u>Training Objectives</u>: weighted sum of supervised cross-entropy \mathcal{L}_{CLF} , agreement loss $\mathcal{L}_{\text{MASK}}$, sparsity loss \mathcal{L}_{SPS} , and discreteness loss \mathcal{L}_{ENT}

$$\mathcal{L} = \mathcal{L}_{\text{CLF}} + \alpha \mathcal{L}_{\text{MASK}} + \beta \mathcal{L}_{\text{SPS}} + \gamma \mathcal{L}_{\text{ENT}}$$

Enhancing the Backbone with The Learned Explanation: IBGNN+

➤ Combine the two modules by applying the shared global explanation mask to individual brain networks →

Predictions and Interpretations are produced in a closed-loop for brain network analysis

Suppress random noises

Highlight essential disorder-specific signals

- 1. Introduction & Motivation
- 2. The Proposed Model: IBGNN+
 - The backbone model IBGNN
 - *The globally shared explanation generator*
 - Enhancing the backbone with the learned explanations
- 3. Experiments
- 4. Interpretation Analysis
- **5.** Conclusion & Future Work

Experiments – Datasets

- ➤ Human Immunodeficiency Virus Infection (HIV) preprocessed using DPARSF¹ toolbox
- ➤ Bipolar Disorder (BP) preprocessed using FSL² toolbox
- ➤ Parkinson's Progression Markers Initiative (PPMI) preprocessed using FSL² toolbox and Advanced Normalization Tools (ANTs)³

Dataset	Modality	# samples	Atlas	Size	Response	# classes
HIV	fMRI	70	AAL	90×90	Human Immunodeficiency Virus Infection	2
BP	DTI	97	Brodmann	82×82	Bipolar Disorder	2
PPMI	DTI	754	Desikan-Killiany	84×84	Parkinson's Disorder	2

1 http://rfmri.org/DPARSF/

3 http://stnava.github.io/ANTs/

2 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

Tab.1: Dataset summarization

Experiments - Baselines

- Shallow Baselines:
 - M2E¹, MIC², MPCA³, MK-SVM⁴
- <u>Deep Baselines</u>:
 - GCN⁵, GAT⁶, PNA⁷
- SOTA deep models specifically designed for brain networks:
 - BrainNetCNN⁸, BrainGNN⁹
- 1 Multi-view multi-graph embedding for brain network clustering analysis. AAAI (2018)
- 2 Clustering on multi-source incomplete data via tensor modeling and factorization. PAKDD (2015)
- 3 Mpca: Multilinear principal component analysis of tensor objects. IEEE Trans. Neural Netw. (2008)
- 4 Multimodal analysis of functional and structural disconnection in alzheimer's disease using multiple kernel sym. Hum. Brain Mapp. (2015)
- 5 Semi-supervised classification with graph convolutional network. ICLR (2017)
- 6 Graph attention networks. ICLR (2018)
- 7 Principal neighbourhood aggregation for graph nets. NeurIPS (2020)
- 8 Brainnetcnn: Convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage (2017)
- 9 Braingnn: Interpretable brain graph neural network for fmr ianalysis. Med. Image Anal. (2021)

Experiments - Prediction Performance

Mathad	HIV			BP			PPMI		
Method	Accuracy	F1	AUC	Accuracy	F1	AUC	Accuracy	F1	AUC
M2E	$57.14{\scriptstyle\pm19.17}$	$53.71{\scriptstyle\pm19.80}$	$57.50{\scriptstyle\pm18.71}$	$52.56{\scriptstyle\pm13.86}$	$51.65{\scriptstyle\pm13.38}$	$52.42{\scriptstyle\pm13.83}$	$78.69{\scriptstyle\pm1.78}$	$45.81{\scriptstyle\pm4.17}$	$50.39{\scriptstyle\pm2.59}$
MIC	$54.29{\scriptstyle\pm18.95}$	$53.63{\scriptstyle\pm19.44}$	$55.42{\scriptstyle\pm19.10}$	$62.67{\scriptstyle\pm20.92}$	$63.00{\scriptstyle\pm21.61}$	$61.79{\scriptstyle\pm21.74}$	$79.11{\scriptstyle\pm2.16}$	$49.65{\scriptstyle\pm5.10}$	$52.39{\scriptstyle\pm2.94}$
MPCA	$67.14{\scriptstyle\pm20.25}$	$64.28{\scriptstyle\pm23.47}$	$69.17{\scriptstyle\pm20.17}$	$52.56{\scriptstyle\pm13.12}$	$50.43{\scriptstyle\pm14.99}$	$52.42{\scriptstyle\pm13.69}$	$79.15{\scriptstyle\pm0.57}$	$44.18{\scriptstyle\pm0.18}$	50.00 ± 0.00
MK- SVM	$65.71{\scriptstyle\pm7.00}$	$62.08{\scriptstyle\pm7.49}$	$65.83{\scriptstyle\pm7.41}$	$57.00{\scriptstyle\pm8.89}$	$41.08{\scriptstyle\pm13.44}$	$53.75{\scriptstyle\pm8.00}$	$79.15{\scriptstyle\pm0.57}$	$44.18{\scriptstyle\pm0.18}$	$50.00{\scriptstyle\pm0.00}$
GCN	$70.00{\scriptstyle\pm12.51}$	$68.35{\scriptstyle\pm13.28}$	$73.58{\scriptstyle\pm9.49}$	$55.56{\scriptstyle\pm13.86}$	$50.71 \scriptstyle{\pm 11.75}$	$61.55{\scriptstyle\pm28.77}$	$78.55{\scriptstyle\pm1.58}$	$47.87_{\pm 4.40}$	$59.43{\scriptstyle\pm8.64}$
GAT	$71.43{\scriptstyle\pm11.66}$	$69.79 \scriptstyle{\pm 10.83}$	$77.17{\scriptstyle\pm9.42}$	$63.34{\scriptstyle\pm9.15}$	$60.42{\scriptstyle\pm7.56}$	$67.07{\scriptstyle\pm5.98}$	$79.02{\scriptstyle\pm1.25}$	$45.85{\scriptstyle\pm3.16}$	$64.40{\scriptstyle\pm6.87}$
PNA	$57.14{\scriptstyle\pm12.78}$	$45.09{\scriptstyle\pm19.62}$	$57.14{\scriptstyle\pm12.78}$	$63.71{\scriptstyle\pm11.34}$	$55.54{\scriptstyle\pm14.06}$	$60.30{\scriptstyle\pm11.89}$	$79.36{\scriptstyle\pm1.84}$	$51.76 \scriptstyle{\pm 10.32}$	$54.71{\scriptstyle\pm6.77}$
BrainNetCNN	$69.24{\scriptstyle\pm19.04}$	$67.08 \scriptstyle{\pm 11.11}$	$72.09{\scriptstyle\pm19.01}$	$65.83{\scriptstyle\pm20.64}$	$64.74{\scriptstyle\pm17.42}$	$64.32{\scriptstyle\pm13.72}$	$55.20{\scriptstyle\pm12.63}$	$55.45{\scriptstyle\pm9.15}$	$52.54{\scriptstyle\pm10.21}$
${\bf BrainGNN}$	$74.29{\scriptstyle\pm12.10}$	$73.49{\scriptstyle\pm10.75}$	$75.00{\scriptstyle\pm10.56}$	$68.00{\scriptstyle\pm12.45}$	$62.33{\scriptstyle\pm13.01}$	$74.20{\scriptstyle\pm12.93}$	$69.17 \scriptstyle{\pm 0.00}$	$\overline{44.19{\scriptstyle\pm0.00}}$	$45.26{\scriptstyle\pm3.65}$
IBGNN	82.14±10.81*	82.02±10.86*	86.86±11.65*	$73.19{\scriptstyle\pm12.20}$	$72.87_{\pm 12.09}^*$	83.64±9.61*	79.82±1.47	$51.58{\scriptstyle\pm4.66}$	$70.65_{\pm 6.55}^*$
${\rm IBGNN} +$	$8\overline{4.29}_{\pm 12.94}^{*}$	$83.86_{\pm 13.42}^{*}$	$88.57_{\pm 10.89}^{*}$	$7\overline{6.33}$	$76.13_{\pm 13.01}^{*}$	$\overline{84.61}$	$\underline{79.55{\scriptstyle\pm1.67}}$	$56.58 \scriptstyle{\pm 7.43}$	$\overline{72.76_{\pm 6.73}}^*$

Tab.2: Experiment results (%) on three datasets

- Backbone IBGNN outperforms shallow/deep baselines (up to 11% absolute improvement on BP).
- The explanation enhanced IBGNN+ further improve the backbone by ~9.7% relative improvement.
 - ➤ IBGNN+ can effectively **highlight the disorder-specific signals** while achieving the benefit of **restraining random noises** in individual graphs

- 1. Introduction & Motivation
- 2. The Proposed Model: IBGNN+
 - The backbone model IBGNN
 - *The globally shared explanation generator*
 - Enhancing the backbone with the learned explanations
- 3. Experiments
- 4. Interpretation Analysis

Interpretation Analysis - Neural System Mapping

- ROIs on brain networks can be partitioned into different *neural systems*
- 8 commonly used neural systems:
 - Visual Network (VN)
 - Auditory Network (AN)
 - Bilateral Limbic Network (BLN)
 - Default Mode Network (DMN)
 - Somato-Motor Network (SMN)
 - Subcortical Network (SN)
 - Memory Network (MN)
 - Cognitive Control Network (CCN)

Image source: VectorStock/Human brain function map vector image

Interpretation Analysis – Salient ROIs

Fig.2: Salient **ROIs** on the explanation enhanced brain connection networks for Health Control (HC) and Patient.

- Group-level & Individual-level interpretations on which ROIs contribute most to the prediction of a specific disorder:
 - **HIV**: anterior cingulate, paracingulate gyri, inferior frontal gyrus
 - **BP**: secondary visual cortex and medial to superior temporal gyrus
 - **PPMI**: rostral middle frontal gyrus and superior frontal gyrus
- The observed salient ROIs can be potential biomarkers to identify brain disorders from each cohort.

Interpretation Analysis – Important Connections

Fig.3: Important **connections** on the explanation enhanced brain connection network. Edges connecting nodes within the same neural system (VN, AN, BLN, DMN, SMN, SN, MN, CCN) are colored accordingly.

Observations:

- **HIV**: patients excludes rich interactions within the DMN and VN systems
- **BP**: connections within BLN system of patients are much sparser
- **PPMI**: connectivity in patients decreases in the SMN and DMN systems

- 1. Introduction & Motivation
- 2. The Proposed Model: IBGNN+
 - The backbone model IBGNN
 - *The globally shared explanation generator*
 - Enhancing the backbone with the learned explanations
- 3. Experiments
- 4. Interpretation Analysis
- 5. Conclusion & Future Work

Summary

Conclusion:

- Propose a novel interpretable GNN framework for connectome-based brain disorder analysis
 - A brain network-oriented GNN predictor
 - A globally shared explanation generator
- Discover disorder-specific interpretations from the generated explanation mask

Future Work:

• Utilize pre-training and transfer learning techniques to learn across datasets and cohorts

Thanks for Listening!

Presenter: Hejie Cui

