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Abstract. Pulmonary vessel segmentation is important for clinical di-
agnosis of pulmonary diseases, while is also challenging due to the com-
plicated structure. In this work, we present an effective framework and
refinement process of pulmonary vessel segmentation from chest com-
puted tomographic (CT) images. The key to our approach is a 2.5D seg-
mentation network applied from three orthogonal axes, which presents a
robust and fully automated pulmonary vessel segmentation result with
lower network complexity and memory usage compared to 3D networks.
The slice radius is introduced to convolve the adjacent information of
the center slice and the multi-planar fusion optimizes the presentation
of intra and inter slice features. Besides, the tree-like structure of pul-
monary vessel is extracted in the post-processing process, which is used
for segmentation refining and pruning. In the evaluation experiments,
three fusion methods are tested and the most promising one is compared
with the state-of-the-art 2D and 3D structures on 300 cases of lung im-
ages randomly selected from LIDC dataset. Our method outperforms
other network structures by a large margin and achieves by far the high-
est average DICE score of 0.9272 and a precision of 0.9310, as per our
knowledge from the pulmonary vessel segmentation models available in
literature.

Keywords: Pulmonary Vessel Segmentation · U-Net++ · 2.5D CNN.

1 Introduction

Pulmonary vessel segmentation is a topic of high interest in the field of medi-
cal image analysis: accurate vascular analysis has extremely important research
and application value for treatment planning and clinical effect evaluation. Pul-
monary vessel segmentation is a basis for common pulmonary vascular diseases
diagnosis such as lobectomy and pulmonary embolism [2].

However, the lung of the human body is the exchange place for metabolically
produced gases, which is rich in trachea and vascular tissues, so its structure
is relatively complicated. At the same time, due to factors such as noise and
volume effect, CT images might suffer from poor contrast and blurred bound-
aries. Moreover, the pulmonary venous arteries and veins are intertwined and
accompanied, which further increases the difficulty of segmentation [4].



A number of earlier vessel segmentation methods like tracking algorithms [9],
seed point based [3], edge-based or region-based deformable model [11] have been
applied and tested in different anatomical regions or imaging modalities, such as
retina images. These methods, however, depend on hand-crafted features, thus
having limited feature representation abilities. Besides, few supervised methods
have been applied on pulmonary vessel segmentation. This is due to the inac-
cessibility of complex, fully-annotated dataset, which has become an important
factor limiting the development of deep learning algorithms in this task [6]. Be-
sides, relevant vessel segmentation studies have proposed the use of synthetic
data for 2D or 3D neural network training [7], but considering the complexity
of real blood vessel distribution and the influence of pathological tissue variabil-
ity, hardly can synthetic data truly and comprehensively reflect the pattern of
vascular tree.

Fully connected neural networks (FCNs) have achieved general success on
segmentation tasks. In order to find an effective segmentation method for pul-
monary vessel segmentation task, we do early-stage experiments on both 2D
FCNs and 3D FCNs architecture with volumetric input. Result shows that 2D
FCNs ignore the context information along the stacked axis, which contains im-
portant connection information for the upper and lower levels of the vascular
tree; while 3D FCNs suffer from high computational cost and GPU memory
consumption, which impedes the performance for large scale dataset [13].

To better solve the problems mentioned above, we have proposed a fused
2.5D U-Net++ applied from three orthogonal axes. We use volumetric ground
truth generated by unsupervised methods and then manually corrected by pro-
fessional radiologists as the input of 2D convolutional network for each direction.
The voxel prediction results of adjacent slices are employed for the prediction
of the center slice, and segmentation volume of each axis is gained by stacking
the segmentation maps of the center slices. This 2.5D convolution process is ap-
plied from three axes, where 3D contexts are effectively extracted and jointly
optimized for an accurate pulmonary vessel tree segmentation. The evaluation
of our proposed network achieves a reliably better result compared with sev-
eral state-of-the-art segmentation networks. Besides, we also propose a post-
processing process where the tree-like skeleton is generated for the refining of
the segmentation result. Our contributions mainly lie in:

– We propose a 2.5D convolution network, which employs the 2D convolutional
network on a stack of adjacent slices and fuses the features extracted from
three orthogonal axes.

– A whole automated segmentation framework is given and we introduce a
post-processing where the segmentation result is refined by the graph infor-
mation of pulmonary vessel tree.

– Our method gives a very competitive performance and ranks 1st till now
on DICE Similarity Coefficient and Precision compared with the results re-
ported by other state-of-the-art methods.



2 Methods

We combine the idea of 2.5D network [13] and orthogonal fusion of multi-planar
network to obtain a new architecture: an orthogonal fused 2.5D U-Net++. Fig. 1
shows the pipeline of our proposed method for pulmonary vessel segmentation.
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Fig. 1. Overall architecture of the proposed pulmonary vessel segmentation framework.
Each volume data is sampled as adjacent slice groups along three orthogonal axes and
then fed to a 2.5D U-Net++ network; The features extracted by the three parallel 2.5D
networks are fused to optimize the volumetric representation; In the post processing,
a structure graph is extracted to refine the segmentation result. (a) The structure of
2.5D U-Net++, whose output is the two-channel probability map of the center slice.
(b) The whole framework, including the orthogonal fusion of multi-planar networks
and the post-processing for segmentation refinement.

2.5D Network Based on U-Net++ In the clinical practice, the experienced
radiologists usually observe and judge the full structure of pulmonary vessel
based on several successive slices along a specific axis. Therefore, a conventional
2D based network will easily ignore the context information while extracting the
intra slice features, thus restricting the segmentation accuracy [5].

In order to include the adjacency information between slices while doing the
vessel segmentation, we design a 2.5D network which digests multiple channels



cropped from the original CT images. Slice radius is introduced, where slices
within the radius will be convolved during the feature map extraction process.
The input channel is 9, and the ground-truth of the middle slice will be provided.
The upper and lower 4 pieces of the middle slice are used to generate the feature
maps. Since the information within radius range will be convolved, the inter slice
information is preserved as much as possible to help the segmentation of middle
slices. The output channel of the 2.5D network is 2, indicating the voxel-wise
probability of being foreground or background.

Orthogonal Fusion of Multi-planar Networks Adjacent slices along each
of the orthogonal directions including axial, sagittal, and coronal provide differ-
ent connectivity information. To segment the candidate vessel voxels, the slice
groups along three axes are processed in parallel. Slices within the radius will go
through one of three separated identical up-sampling, down-sampling and convo-
lution process [14], which is composed by a stack of VGG blocks [10]. These three
parallel results of each direction are then fused under the comparison of different
methods, including intersection, union and average value. By jointing together
the intra and inter slice features extracted along three orthogonal axis, we op-
timize the description of volumetric feature representation to be more integral
and comprehensive. The average fusion outperforms others on DICE, precision
and recall value so we adopt it in the proposed orthogonal fusion model.

Two-Stage Loss Function For vessel segmentation task, the object of interest
accounts far less than the background voxels in most cases, which leads to a
high rate of false positive and recall values [12]. To alleviate the class-imbalance
problem caused by the inequitable penalty of positive and negative voxels, we
separate the training process as two stage: 1) In the pre-trained stage, we use
NLL(Negative Log Likelihood) loss to get a coarse model; 2) In the fine-tuned
stage, we resume the coarse model and adopt a weight-balanced loss to suppress
the over-segmentation and high false-positive rate: the calculated voxel-wised
losses of both positive and negative positions are sorted, and the negative sorted
list is much longer than the positive one considering the small occupancy of in-
terest regions. We cut the negative list to make it the same length as the positive
list. The top part of negative list is taken for loss function in order to balance the
weight between the proportion of two kinds of voxels. The weighted loss function
employed is described as below:

L = LY+(W ) + LY−(W ) (1)

LY+(W ) = −
N∑

i∈Y+

logP (yi = 1|X;W ) (2)

LY−(W ) = −
N∑

j∈Ỹ−

logP (yj = 0|X;W ) (3)



where Ỹ− represents the top N loss value selected from the sorted list of negative
samples and N is the number of elements in positive list.

Vessel Structure Generation In the post-processing stage, vessel structure
is used to refine the segmentation result. We generate the morphology repre-
sentation of tree-like graph from the skeleton of segmentation result. The graph
includes nodes and edges, and the connected components can be calculated. This
tree-like graph of pulmonary vessel can express plenty of potential useful infor-
mation at very fine scales. In the post-processing, connected components with
less than 10 nodes are trimmed on the graph, then the refined graph is filled edge
by edge to get a refined segmentation result. The input of the post-processing is
segmentation result of the end-to-end segmentation network and the output is
refined vessel tree segmentation composed by the main connected components
with more than 10 nodes [8].

In addition to pruning the segmentation result, the topological structure
represented by edges and nodes also indicates meaningful information for clin-
ical practice, such as the location of junction points, the number of individual
branches, and the connection relationship between bifurcations and end-points.
We will continue to explore its application in future work.

3 Experiments

Dataset and Pre-processing We randomly select a subset of 300 cases of chest
CTs from publicly available LIDC [1] dataset and split them into 270 cases for
training and 30 cases for validating. 10% of the selected dataset is utilized as
testing set. To ensure the data variability, both challenging and visible vessels are
included to cover a comprehensive situation. The ground truth mask for training
is first generated using unsupervised method and then refined and validated by
expert radiologists.

Pre-processing includes two parts: resolution regularization and Hounsfield
Unit (HU) Value normalization. The original resolution varies from 0.6× 0.6×
1.25 mm3 to 0.9× 0.9× 2.5 mm3. For resolution regularization, we resample the
data to 1 mm3 resolution cube. For intensity normalization, we adopt a lung
window of [−1200, 600] HU. The HU value of all data is cropped and adjusted
to the range of lung window and then normalized to [0, 1].

Implementation Details The training of our model is performed on a work-
station with a CPU of Intel(R) Core(R) i7-7700 @ 3.6 GHz and a NVIDIA GTX
1080 Ti GPU with 11GB of memory. In the training process of the fused 2.5D
network, we use the SGD optimizer with a momentum of 0.99 and a weight
decay of 1e-8. The initial learning rate is 0.001 and we apply a stepped learning
rate scheduler with the initial value multiplied by a specific gamma value every
several epochs. The loss function is divided into two stages: in the pre-trained
stage, we use NLL-loss; and in the fine-tuned stage, we propose the weight-



Table 1. Comparison of Six Fusion Methods.

Methods Min Dice Max Dice Avg. Dice Precision/Recall

Axial 0.8618 0.9584 0.9162 0.9250/0.9144

Sagittal 0.8444 0.9575 0.9114 0.9232/0.9080

Coronal 0.7474 0.9547 0.8964 0.9024/0.9020

Union 0.8252 0.9580 0.9118 0.8714/0.9634

Intersection 0.7946 0.9555 0.9096 0.9518/0.8772

Average 0.8779 0.9627 0.9262 0.9310/0.9272

balanced loss to alleviate the disproportionate rate between the foreground and
background.

Results and Discussion The evaluation experiments include two parts.
First, we compare the single axis model with three fusion methods, including

intersection, union and average value, to find the best one in keeping information
of three axes. The pulmonary vessel segmentation result of each fusion method
is presented in Table. 1. Grid search in the range of (0.05, 0.5) is used to find
the best threshold value of the prediction result map for each fusion method.
We record the minimal, maximum, average dice value and precision/recall ratio
under the best threshold of each method. Results show that the average fusion
method achieves the highest performance in all statistical indicators.
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Fig. 2. The visual comparison between the ground truth and result of the proposed
2.5D Average Orthogonal Fused U-Net++.



Sencond, we further compare the average fused 2.5D network structure with
several state-of-the-art network structures, including 2D U-Net++, 3D U-Net++
as well as several 3D FCNs. The quantitive results of U-Net++ based model are
shown in Table. 2 for comparison on a single-model basis. The promising 2.5D
network significantly outperforms 2D and 3D FCNs models, which validates the
advantage of our proposed structure.

Table 2. Comparison of Three State-of-art Structures.

Structures Min Dice Max Dice Avg. Dice Precision/Recall

2D U-net++ 0.5201 0.7376 0.6628 0.6629/0.6767

3D U-Net++ 0.4385 0.8038 0.7286 0.7425/0.7436

2.5D U-Net++ 0.8779 0.9627 0.9262 0.9310/0.9272

Fig. 2 shows the qualitative results of our methods compared with the ground
truth. Results of more cases are displayed in Fig. 3 to prove the robustness of
model on different quality CT images.

Fig. 3. Qualitative results of average fusion 2.5D U-Net++ on more CT images. Note
that the position and shape of lung are varied from case to case, and the vessel seg-
mentation results remain high performance on different quality CT images.

4 Conclusion

Pulmonary Vessel Segmentation is one of the most challenging tasks in medical
image analysis. The segmentation must overcome the complexity of the pul-
monary structure as well as the limited resolution of CT images. In this paper,
we propose a novel framework for automated pulmonary vessel segmentation
based on a fused 2.5D convolution network structure. Slice radius is introduced



to convolve adjacent information and the multi-planar fusion optimizes the pre-
sentation of intra and inter slice features. Besides, a post-processing is designed
to refine the segmentation results using main components information of the pul-
monary vessel tree. Our method excels others by a large margin on pulmonary
vessel segmentation task and achieves very competitive results on DICE and
Precision value.
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driven arterial tree generation. Medical image analysis 16(7), 1397–1414 (2012)

8. Shang, Y., et al.: Vascular active contour for vessel tree segmentation. IEEE Trans-
actions on Biomedical Engineering 58(4), 1023–1032 (2011)

9. Shikata, H., Hoffman, E.A., Sonka, M.: Automated segmentation of pulmonary
vascular tree from 3d ct images. In: Medical Imaging 2004: Physiology, Function,
and Structure from Medical Images. vol. 5369, pp. 107–117. International Society
for Optics and Photonics (2004)

10. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)
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