Electronic Health Records (EHRs) have become increasingly popular to support clinical decision-making and healthcare in recent decades. EHRs usually contain heterogeneous information, such as structural data in tabular form and unstructured data in textual notes.
Electronic health records (EHRs) contain valuable patient data for health-related prediction tasks, such as disease prediction. Traditional approaches rely on supervised learning methods that require large labeled datasets, which can be expensive and challenging to obtain.
The growing availability of well-organized Electronic Health Records (EHR) data has enabled the development of various machine learning models towards disease risk prediction. However, existing risk prediction methods overlook the heterogeneity of complex diseases, failing to model the potential disease subtypes regarding their corresponding patient visits and clinical concept subgroups.