GNNs

BrainGB: A Benchmark for Brain Network Analysis with Graph Neural Networks

Mapping the connectome of the human brain using structural or functional connectivity has become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph Neural Networks (GNNs) motivated from geometric deep learning have attracted broad interest due to their established power for modeling complex networked data.

On Positional and Structural Node Features for Graph Neural Networks on Non-attributed Graphs

Graph neural networks (GNNs) have been widely used in various graph-related problems such as node classification and graph classification, where the superior performance is mainly established when natural node features are available.

Interpretable GNNs for Connectome-Based Brain Disorder Analysis

Human brains lie at the core of complex neurobiological systems, where the neurons, circuits, and subsystems interact in enigmatic ways. Understanding the structural and functional mechanisms of the brain has long been an intriguing pursuit for neuroscience research and clinical disorder therapy.

FBNetGen: Task-aware GNN-based fMRI Analysis via Functional Brain Network Generation

Recent studies in neuroscience show great potential of functional brain networks constructed from fMRI data for popularity modeling and clinical predictions. However, existing functional brainnetworks are noisy and unaware of down stream prediction tasks, while also incompatible with recent powerful machine learning models of GNNs.